
DEVELOPMENT OF A GRID ENABLED
CHEMISTRY APPLICATION*

István Lagzi1, Róbert Lovas2, Tamás Turányi1

1Department of Physical Chemistry, Eotvos University (ELTE)

lagzi@vuk.chem.elte.hu, turanyi@garfield.chem.elte.hu

2Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI)

rlovas@sztaki.hu

Abstract P-GRADE development and run-time environment provides high-level graph-
ical support to develop scientific applications and to execute them efficiently
on various platforms. This paper gives a short overview on the parallelization
of a simulator algorithm for chemical reaction-diffusion systems. Applying the
same user environment we present our experiences regarding the execution of
this chemistry application on non-dedicated clusters, and in different grid envi-
ronments.

Keywords: programming environment, grid, cluster, computational chemistry

1. Introduction

Beside the widely applied PC clusters and supercomputers, different com-
putational grid systems [1] are becoming more and more popular among scien-
tists, who want to run their simulations (having high computational and storage
demands) as fast as possible. In such grid systems, large number of heteroge-
neous resources can be interconnected in order to solve complex problems.

One of the main aims of a joint national project, Chemistry Grid and its ap-
plication for air pollution forecast is to investigate some aspects of Grids, such
as their application as high performance computational infrastructure in chem-
istry, and to find practical solutions. The Department of Physical Chemistry
(ELTE) applied P-GRADE environment to parallelise an existing sequential

*The research described in this paper has been supported by the following projects and grants: Hungar-
ian IHM 4671/1/2003 project, Hungarian OTKA T042459 and T043770 grants, OTKA Instrument Grant
M042110, Hungarian IKTA OMFB-00580/2003, and EU-GridLab IST-2001-32133.



138 DISTRIBUTED AND PARALLEL SYSTEMS

simulator for chemical reactions and diffusions in the frame of the Chemistry
Grid project.

In this paper we introduce briefly the fundamental problems of reaction-
diffusion systems (see Section 2) and its parallelisation with P-GRADE pro-
gramming environment (see Section 3). We present our experiences in details
regarding the execution and performance of this chemistry application on non-
dedicated clusters (see Section 4) taking the advantages of the built-in dynamic
load balancer of P-GRADE run-time environment. Finally, its successful exe-
cution in Condor and Globus based Grids are also presented (see Section 5).

2. Reaction-diffusion equations

Chemical pattern formation arises due to the coupling of diffusion with
chemistry, such as chemical waves [3], autocatalytic fronts [4], Turing struc-
tures [5] and precipitation patterns (Liesegang phenomenon) [6]. Evolution of
pattern formation can be described by second-order partial differential equa-
tions:

where is the concentration, is the diffusion coefficient and is the chem-
ical reaction term, respectively, of the chemical species, and is time. The
chemical reaction term may contain non-linear terms in For chem-
ical species, an dimensional set of partial differential equations is formed
describing the change of concentrations over time and space.
The operator splitting approach is applied to equations (1), decoupling trans-
port (diffusion) from chemistry, i.e.

where and are the diffusion and the chemistry operators, respectively,
and and are the concentration of the species at time and
where is the time step.
The basis of the numerical method for the solution of the diffusion opera-
tor is the spatial discretisation of the partial differential equations on a two-
dimensional rectangular grid. In these calculations, the grid spacing is uni-
form in both spatial directions. A second order Runge-Kutta method is used to
solve the system of ODEs arising from the discretisation of partial differential
equations with no-flux boundary conditions on a 360×100 grid. The Laplacian
is calculated using nine-point approximation resulting in an error of for
the Laplacian.

The equations of the chemical term have the form



Development of a grid enabled chemistry application 139

The time integration of system (2) is performed with the BDF method using
the CVODE package [7, 8], which can solve stiff chemical kinetics equations.

3. Parallel implementation in P-GRADE

In order to parallelise the sequential code of the presented reaction-diffusion
simulation the domain decomposition concept was followed; the two-dimen-
sional grid is partitioned along the x space direction, so the domain is decom-
posed into horizontal columns. Therefore, the two-dimensional subdomains
can be mapped onto e.g. a pipe of processes (see Figure 1, Template: sim win-
dow). An equal partition of subdomains among the processes gives us a well
balanced load during the solution of the reaction-diffusion equations assum-
ing a dedicated and homogeneous cluster or a dedicated supercomputer as the
execution platform.

Figure 1. Parallel code of reaction-diffusion simulation in P-GRADE



140 DISTRIBUTED AND PARALLEL SYSTEMS

During the calculation of the diffusion of the chemical species communi-
cations are required to exchange information on the boundary concentrations
between the nearest neighbour subdomains, which are implemented via com-
munication ports, channels (see Figure 1, Template: sim window, arcs be-
tween small rectangles), and communication actions (see Figure 1, Process:

icons labelled as ’le’ and ’ri’ in the control flow like descrip-
tion).

For the calculation the process invokes external sequential functions (see
Figure 1, bottom of Process: windows), which are available
as sequential third-party code [7, 8] written in C. The implementation is pub-
lished in details in [13].

4. Performance results on non-dedicated cluster

The parallel version of reaction-diffusion simulation has been tested and
fine tuned [13] on SZTAKI cluster using it as a dedicated resource. This self-
made Linux cluster contains 29 dual-processor nodes (Pentium III/500MHz)
connected via Fast Ethernet.

Generally the exclusive access and use of a cluster (e.g. at universities) can
not be guaranteed. Sometimes the application is implemented inefficiently,
and it may cause unbalanced load (and less effective execution) on the cluster
nodes. In both cases the dynamic load balancer [9] of P-GRADE environment
can be applied.

In case of the reaction-diffusion simulator the parallel application showed
balanced CPU loads [13] on a homogenous and dedicated cluster but we ex-
perienced significant slow-down if any of the nodes get an extra calculation
intensive task or the node can not deliver the same performance as the other
ones. The reason for this phenomenon is that the application must synchronise
the boundary conditions at each simulation steps, and they have to wait for the
slowest running process. Such situation can be inspected in Figure 2, Prove
visualisation window when the application was executed on the n2, n3, n4, and
n5 nodes in the first 3 minutes (see the details in Figure 2, smaller Prove win-
dow in left). The space-time diagram presents a task bar for each process, and
the arcs between the process bars are showing the message passing between
the processes. In all the diagrams of PROVE tool, the black colour represents
the sequential calculations, and two different colours; green for incoming and
grey for outgoing communication used for marking the message exchanges.

Thus, we turned on the load balancing support in P-GRADE and re-compiled
the application under PVM (see Figure 2, Application settings dialog window).
In our case, the actual period was set to 180 seconds when the load balancer



Development of a grid enabled chemistry application 141

has to evaluate the execution conditions based on the gathered information and
to make decisions [9].

As the on-line visualisation tool depicts (see Figure 2, Prove window) at
the beginning of the 4th minute the load balancer initiated the migration of
processes to new nodes: n19, n13, n21, and n0 (see Figure 2, Prove window in
right). One message was sent before the migration from the node n2 (process
sim_0) and delivered just after the migration to the node n19 (process sim_1);
the co-ordinated checkpointer in P-GRADE can handle such situations (on-
the-fly messages) without any problems.

We could focus on the interesting parts of the trace (see Figure 2, smaller
PROVE windows) using its zooming facilities. According to statistics the ap-
plication was executed almost optimally from the 5th minute. The migration
took about 1 min and 57 sec due to mainly the large memory images of pro-
cesses (more than 95 MB/process), that must be transferred from the actual
nodes, stored at the checkpoint server, and must be retrieved during the recov-

Figure 2. Performance visualisation on non-dedicated cluster



142 DISTRIBUTED AND PARALLEL SYSTEMS

ery phase of migration on the new nodes. Since the current P-GRADE version
launches only one checkpoint server to store these checkpoint files, the net-
work connection of the single checkpoint server may be a serious performance
bottle neck. In our case the migration caused almost 800 MB network traffic
on the Fast Ethernet network interface of the checkpoint server.

However, the cost of migration is still acceptable since the application con-
tinued its execution more than 2 times faster during the remaining calculation;
one simulation step needed 1.5-1.7 seconds contrary to the earlier measured
3.5-5 seconds. Our application needed only 14 minutes (with 500 simulation
steps) instead of 25 minutes without the intervention of load balancer tool.
Obviously, with more simulation steps we could get more significant speedup.

5. Performance results in the Grid

The simulation has been also tested with 10.000 iterations [13]; the parallel
application was able to migrate automatically to another friendly Condor [10]
pool when the actual pool had become overloaded, as well as to continue its
execution from the stored checkpoint files [2].

The application has been also executed successfully on Globus [16] based
Grid. In order to support the transparent execution of applications on local
and remote (interactive or Grid) resources, P-GRADE provides a new I/O file
abstraction layer (see Figure 1, I/O Files Dialog window), where the physi-
cal data files of the application can be assigned to logical names, which can
be referenced in the application by file operations. We defined the input and
output files and, in this way, all the necessary I/O files can be automatically
transferred to and from the remote site, and the executable can be also staged
by P-GRADE run-time system.

Figure 3. Performance results in Globus mode



Development of a grid enabled chemistry application 143

Having a valid certificate to deploy a Globus resource (instead of the lo-
cal resources), the user can turn on the Globus mode with MPI support in
P-GRADE (see Figure 3, Application settings). On-line monitoring and visu-
alisation is also possible on Globus resources using the GRM/Mercury moni-
toring infrastructure [11]; only a re-compilation is needed for the utilization of
the Globus/MPI/Monitoring facilities.

The user can select the specific Globus resource where the entire application
will be executed in the Manual Mapping Window (see Figure 3) (in MPICH-
G2 mode, processes can be mapped individually to different Globus resources
but this mode showed poor performance in our application due to the frequent
message exchanges between simulation steps). The monitoring infrastructure
provides on-line view similarly to the local execution of job (see Figure 3,
PROVE window). In the presented case, we executed the 10-process pipe ver-
sion of the application as a Globus job. The initial time before the real execu-
tion and the transfer of output files back (i.e. the ’cost’ of Grid based execution
from the user’s point of view) was within 1 minute because we selected the fork
job-manager on the Grid site, the cluster was not overloaded, the size of trans-
ferred files was relatively small (less then 4MB), and the Hungarian academic
network (HBONE) provided high bandwidth between the sites.

6. Related works

P-GRADE has been successfully applied for the parallelisation of differ-
ent algorithms; e.g. Institute of Chemistry, Chemical Research Centre of the
Hungarian Academy of Sciences has recently parallelised a classical trajectory
calculation written in FORTRAN [12] in the frame of Chemistry Grid project.
Some other development systems, such as ASSIST [14], or CACTUS [15], tar-
get the same research community (biologist, chemists, etc.), and they can offer
several useful facilities similarly to P-GRADE. On the other hand, P-GRADE
is able to provide more transparent run-time support for parallel applications
without major user interactions, such as code generation to different platforms
(Condor [10] or Globus-2 [16] based Grids, PVM or MPI based clusters and
supercomputers), migration of parallel jobs across grid sites (or within a clus-
ter) based on automatic checkpointing facilities [2], or application monitoring
of parallel jobs [11] on various grid sites, clusters, or supercomputers [11].

7. Summary

P-GRADE is able to support the entire life-cycle of parallel program devel-
opment and the execution of parallel applications both for parallel systems and
the Grid [2]. One of the main advantages of P-GRADE is the transparency; P-
GRADE users do not need to learn the different programming methodologies
for various parallel systems and the Grid, the same environment is applicable



144 DISTRIBUTED AND PARALLEL SYSTEMS

either for supercomputers, clusters or the Grid. As the presented work illus-
trates, P-GRADE enables fast parallelisation of sequential programs providing
an easy-to-use solution even for non-specialist parallel and grid application
developers, like chemists.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Foster, I., Kesselman, C.: Computational Grids, Chapter 2 of The Grid: Blueprint for a
New Computing Infrastructure, Morgan-Kaufman, (1999)

Kacsuk, P., Dozsa, G., Kovacs, J., Lovas, R., Podhorszki, N., Balaton, Z., Gombas, G.: P-
GRADE: a Grid Programming Environment. Journal of Grid Computing Volume 1, Issue
2, 2003, pp. 171-197

Zaikin, A. N., Zhabotinsky, A. M.: Concentration wave propagation in two-dimensional
liquid-phase self-oscillating system. Nature 225 (1970) 535-537

Luther, R.: Raumliche fortpflanzung chemischer reaktionen. Zeitschrift fur Elektrochemie
12 (1906) 596-600

Turing, A. M.: The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society of London series B 327 (1952) 37-72

Liesegang, R. E.: Ueber einige eigenschaften von gallerten. Naturwissenschaflichee
Wochenschrift 11 (1896) 353-362

Brown, P. N., Byrne, G. D., Hindmarsh, A. C.: Vode: A variable coefficient ode solver.
SIAM Journal of Scientific and Statistical Computing 10 (1989) 1038-1051

Cohen, S. C., Hindmarsh, A. C.: CVODE User Guide. Lawrence Livermore National Labo-
ratory technical report UCRL-MA-118618 SIAM Journal of Scientific and Statistical Com-
puting (1994) pp. 97

Toth, M., Podhorszki, N., Kacsuk, P.: Load Balancing for P-GRADE Parallel Applications.
Proceedings of DAPSYS 2002, Linz, Austria, pp. 12-20

Thain,D., Tannenbaum, T., Livny, M.: Condor and the Grid. In F. Berman, A. J. G. Hey,
G. Fox (eds), Grid Computing: Making The Global Infrastructure a Reality, John Wiley,
2003

Balaton, Z., Gombas, G.: Resource and Job Monitoring in the Grid. Proceedings of Eu-
roPar’2003 Conference, Klagenfurt, Austria, pp. 404-411

Bencsura, A., Lendvay, Gy.: Parallelization of reaction dynamics codes using P-GRADE:
a case study. Computational Science and Its Applications, ICCSA 2004, LNCS, Vol. 3044,
pp. 290-299

Lovas, R., Kacsuk, P., Lagzi, I., Turanyi, T.: Unified development solution for cluster and
grid computing and its application in chemistry. Computational Science and Its Applica-
tions, ICCSA 2004, LNCS, Vol. 3044, pp. 226-235

Vanneschi, M.: The programming model of ASSIST, an environment for parallel and dis-
tributed portable applications. Parallel Computing 28 (2002) 1709-1732

Goodale, T., et al.: The Cactus Framework and Toolkit: Design and Applications. 5th
International Conference on Vector and Parallel Processing, 2002, pp. 197-227

Foster, I., Kesselman, C.: The Globus Project: A Status Report. Proc. IPPS/SPDP ’98
Heterogeneous Computing Workshop, pp. 4-18, 1998.


