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Chapter 1

Introduction

Environmental protection is becoming a more
serious and intensively researched area in Hun-
gary, East Europe. This research includes quan-
titative forecasts of the concentrations of gaseous
and aerosol contaminants. Since the Gaussian
plume model has shortcomings, especially over com-
plex terrain [Pielke, 1984], mesoscale meteorological
models are needed for more accurate estimation of
the mesoscale air quality. In addition, mesoscale
models are frequently used in many other fields.

Mesoscale systems can be phenomenologically
defined as meteorological features too gross to be
observed from a single station, yet too small to
appear even on a sectional synoptic chart [Ligda
(1951)]. This implies that the horizontal scale
ranges from a few kilometers to several hundreds
of kilometers with a time-scale of 1 to 12 hours or
so. The vertical scale extends from tens of meters
to the depth of the troposphere. Using scale anal-
ysis [e.g., Orlanski, 1984], we make a more formal
definition:

e The horizontal scale must be sufficiently large
so that the hydrostatic. equation can be used

e The horizontal scale must be sufficiently small
so that the Coriolis term is small (although it
can still be significant!) relative to the ad-
vective and pressure gradient forces, resulting
in a flow field that is substantially different
from the gradient wind relation, even in the
absence of friction effects.

Mesoscale phenomena that have horizontal
scales of 20-200 km [aspect ratios of O(10)
Ly/Ly 10] are largely hydrostatic, are affected
by the earth’s rotation, and have substantial
ageostrophic components. Included in this cate-
gory are convective storm ensembles, frontal and
jet stream phenomena, some orographic flows (lee

cyclogenesis), polar lows, coma clouds, intensive ex-
tratropical storms (bombs), valley winds, sea breeze
circulations and the morning glory [Emanuel, 1983].
Standardization of atmospheric flows based on scale
analysis of Orlanski was arbitrary and ill-defined
[Orlanski, 1975]. Pielke (1975) places the upper
limit of mesoscale to Orlanski’s Meso-3, while Stull
(1988) defines the lower bound of it at Micro-a.
In addition, todays non-hydrostatic mesoscale mod-
els are able to simulate even meso-y and Micro-a
motions [Thunnis and Bornstein, 1997]. Recently,
Thunnis and Bornstein (1997) proposed new time
and space scale boundaries, including the following
three changes to Orlanski’s scale classification:

1. Renaming Meso-a to Macro-vy
2. Renaming Micro-a to Meso-9
3. Introducing a Micro-é subclass

The first two changes shift mesoscale down into
smaller scale motions. They gave a dynamically
based definition for mesoscale:

“Organized atmospheric motions with
Coriolis force large enough to determine
rotational direction but small enough to
be assumed latitude independent; mo-
tions originate in troposphere.”

In addition, they gave an exact terminology of the
different scale vertical movement:

diffusion Random turbulent motion with zero
mean vertical velocity.

convection Organized non-hydrostatic vertical
movement, which has the same order of mag-
nitude as the horizontal motion, can be both
thermal (free) or mechanical (forced), and
produce the horizontal motion by continuity.



advective circulation Organized mesoscale cir-
culation cells, in which horizontal convergence
result in vertical motions at least one order
smaller velocities as the horizontal.

In general two main types of mesoscale systems are
known: terrain induced and synoptically induced
systems [Pielke, 1984]. There are two kind of ap-
proaches to simulate mesoscale systems:

1. Mesoscale models of severe meteorological
phenomena

2. Mesoscale circulation models

Examples of the first approach are models of severe
storms, which are mostly based on General Circu-
lation Models (GCMs). Mesoscale circulation mod-
els are well suited to simulate mild phenomena as
land-sea breezes or mountain winds. These mod-
els have been developed independently from GCMs
[Kondo, 1989]. There are some models which are
able to simulate both kinds of phenomena with one
model [e.g., Anthes and Warner, 1978], but param-
eterizations in the model are much different for two
phenomena.

Mesoscale systems initiated by atmospheric in-
stability, usually occur less frequently at a given
location and, because they are not forced by well-
defined geographic features, the data requirement of
these phenomena is more formidable [Pielke, 1984].
A large percentage of rainfall over the Earth results
from such features.

One of the first numerical studies of sea- and
land-breezes was a two dimensional model of Es-
toque (1961). McPherson (1970) was the first to
investigate land-sea breeze in a three dimensional
simulation, and was followed by many others.

Nocturnal drainage flow or katabatic wind [e.g.,
Manins and Sawford, 1978], which is a three di-
mensional phenomenon, was numerically simulated
by Yamada (1981), for example. Mahrer and
Pielke (1977) demonstrated differences in depth and
strength of upslope and downslope winds in the ab-
sence of a prevailing synoptic flow. They reported
that the flow tends to form a closed circulation, so
that if pollutants were continuously released in one
segment of the flow, they would tend to accumulate.
Such recirculation is ignored in the Gaussian plume
models [Pielke, 1984].

As it will be discussed more precisely later,
mesoscale models (for economical purposes) are
usually integrated over a portion of the globe on
a limited area, thus correctly formulated boundary
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conditions are essential. Such questions have been
discussed by Oliger and Sundstrom (1976) (with re-
spect to the lateral boundaries) by Klemp and Lilly
(1975) (with respect to the top boundary) and by
many others. A tutorial of the lateral boundary
formulation of Limited Area Models was given by
Warner et al. (1997). Another important question is
the closure problem, i.e., the prognostic equations
of a turbulent variable contain second order mo-
ments that can be predicted with the use of third
order moments, and so on. To close the set of equa-
tions, different techniques were reported in Mellor
and Yamada’s paper (1974) or by Wyngaard (1980),
for example.

Initialization on the mesoscale is also problem-
atic. Normal mode initialization is difficult, but not
impossible [Briere, 1982] to apply, because the nor-
mal modes cannot be determined readily for compli-
cated boundary conditions. Dynamic initialization
is preferred, which does not require normal mode
decomposition.

The objective of this paper is the adaptation of
a three-dimensional hydrostatic first order closure
mesoscale circulation limited area model, which was
developed for the assessment of CO and water va-
por concentrations for a certain region in the atmo-
sphere. The Hungarian version has been developed
and tested. In the next section a brief description
of the considered model will be given. In chapter
2 the adaptation of this model will be described.
Section 2.2 will provide the evaluation of the model
with respect to the topography, and Section 2.3
will summarize the works on the landuse—land cover
datasets. In this paper a limited number of figures
of the model outputs are presented; others are only
referred to. All diagrams of the model outputs can
be found in the log-book of the model runs avail-
able in printed form, from the Department of Me-
teorology, Eotvos University, Budapest, Hungary,
or in downloadable compressed POSTSCRIPT files
through anonymous File Transfer Protocol (FTP).



Chapter 2

Model Description

In this chapter only a description of the model
equations is given; derivations are only referred to
if necessary.

This mesoscale model has been developed at
NRIPR!, Japan, during the past 20 years by Kondo
et al. The main purpose of this project was to de-
velop a more powerful system than Gaussian type
models to study and forecast transport and diffu-
sion processes of pollutants. If we want to assess
the concentration of a pollutant in the atmosphere
which interacts with it’s environment, we need to
know the time variation of the variables in the at-
mosphere (e.g., wind, temperature, etc). If we sim-
ply interpolate these variables from large-scale data,
we lose a lot of information about the interaction
of the atmosphere and the surface, a very impor-
tant feature in the description of pollutant trans-
port processes. This model is a coupled mesoscale
meteorology and air quality model, which can cal-
culate meteorological variables and obtain pollutant
concentrations simultaneously.

2.1 Governing equations of

the model

The governing equations can be derived from the
basic conservation laws for mass, momentum and
heat. In addition equations for some gaseous con-
taminants are solved. In this mesoscale circulation
model, the simulated phenomena have a vertical
scale which is much less than the scale depth of the

INational Research Institute for Pollution and Resources,
forerunner of todays National Institute of Resource and En-
vironment (NIRE)

atmosphere? (H). In addition, wind velocity mag-
nitude is much smaller than the speed of sound in
the atmosphere. For these reasons, mass conserva-
tion can be considered through the so-called shallow
continuity equation or non-divergent assumption:

. ou Ov
de—%+a—y+

ow
5 = 0 (2.1)
where w,v,w are the components of wind velocity
vector V in the Cartesian coordinate system. This
assumption ignores spatial variation for density and
filters sound waves from the model.

Conservation of momentum is considered in the
prognostic equations of the horizontal wind velocity
components. They can be written as follows:

ou__ou_ ou_ ou
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where p is the average density of the air (now
treated as constant through the incompressible as-
sumption Eqn 2.1) and f is the Coriolis parame-
ter (2Qsin¢ put equal to 10% s7!). Assuming
geostrophic synoptic-scale wind, and introducing
the mesoscale scaled pressure® the governing equa-

2Scale depth of the atmosphere is defined as:
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tions are as follows:

Ou_ _ Ou_ Ou_ Ou
ot Oz oy 0z
on

_9% + f(v—vy)
ov__ v ov o
ot Ox oy 0z

on

—@a—y — flu—uy)

where
(1) 3= =~ 32, 2
9790 fot Bz’ Oy

is the geostrophic wind, and

0 - T(@)Rd/ cp
p

is the large-scale average potential temperature.
These equations are valid for the instantaneous val-
ues if the wind speed is much smaller than the speed
of light. We cannot give initial values for turbulent
flow, so we have to solve the equations for the mean*
values, cut-off the deviations and parameterize the
effect of turbulence as divergence of kinematic mo-
mentum flux using the K-theory (a first order clo-
sure). These assumptions yield

Ou __ Ou  Ou  Ou
ot~ “or "oy Vo
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Using the hydrostatic assumption and Boussi-
nesq approximation, the third equation of motion
can be written simply as:

or g0

where Ry is specific gas constant for dry air, ¢, is specific
heat capacity at constant pressure and ppo = 1000 mbar.
The Exner function can be split into large-scale average and
mesoscale perturbations. Here only the perturbation is con-
sidered, and 7 denotes the mesoscale deviation of the scaled
pressure

4mean refers to grid volume and time average, using
Reynold’s averaging rules:

t+At pet+Az py+Ay pz+Az
ST )T LT O dtdw dy dz
At Az Ay Az
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Here 0 is the mesoscale potential temperature de-
viation. Note that the mesoscale pressure gradi-
ent has opposite sign to the buoyancy term gf/02,
in contrast to the synoptic scale pressure gradient,
which has the same sign as the gravity force. See
Appendix A.1 for the complete derivation of the hy-
drostatic equation (Eqn 2.4).

The prognostic equation for temperature can be
derived from the First Law of Thermodynamics.
The derivative of potential temperature can be split
into local derivative and advection terms. To de-
scribe advection in the turbulent flow, turbulent
heat flux divergence contributes to the time vari-
ation of potential temperature in addition to dia-
batic effects such as heat flux divergence, the latent
heat of any phase change and anthropogenic heat,
for example. The prognostic equation for potential
temperature can be written as:

00 __ oo o
ot uaw ”ay

— 0 Hﬁ + LQS + LLE‘

Or; ~ 0z cpo cp0
where ()5 denotes sensible heat transfer by diabatic
processes and L is the latent heat associated with
the phase change F.

For any gaseous pollutant we have to solve the
transport equation, formally very similar to the
equation for temperature (Eqn 2.5), with net body
source and sink terms. Wind field and parameter-
izations of subgrid fluxes are obtained from the si-
multaneously calculated meteorological variables.

To assure the flow is parallel to the terrain at
the lower boundary, it is convenient to introduce
a new vertical coordinate (s) as Mannouji (1982)
suggested:

9
waz

(2.5)

zZ—zZG
D
where zg is the altitude of the terrain, D := zp—zg,
where z7 is the height of the model domain. For the
numerical solution the vertical grid is assumed in a
variable resolution, nearly logarithmic, with a finer
grid near surface, which gives a grid network as pre-
sented on Figure 2.1 in an east-west cross-section
of the model domain (left) and the concordance of
vertical indices to real height is also shown (right).
With this new vertical coordinate, the model equa-
tions are transformed into a terrain following coor-
dinate system. See Appendix A.2 for the terrain fol-
lowing governing equations. Wong and Hage (1983)
pointed out that this kind of coordinate transfor-
mation gives the exact equation system in case of

s =

(2.6)
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The terrain following vertical grid network

10000 T T T

9000 [ q

8000 q

w0

6000 - 1
£ 5000 - B
o
2 .

3000 |- e N 1

2000 TN 1

1000

0 T — Il v Il Il 7\
0 10 20 30 40 50 60
horizontal index, on a constant latitude
height as a function of the vertical index k
10000
+
9000
n
+
8000 T
+
7000 .
+

6000 +
E i
5 5000 v
2 ,

4000 -

n
3000
+
n
2000
T
+
ty
1000
AN
+t
0 Trireaa,

0 5 10 15 20 25 30 35 40 45 50
vertical index k

Figure 2.1: The vertical grid network

small vertical acceleration, so this transformation is
valid in the hydrostatic assumption, even for signifi-
cant slope angle [Yoshizaki, 1988]. Eqns (A.4)-(A.8)
are the basic governing equations for this mesoscale
model.

2.2 Boundary conditions

The model domain is limited both in vertical and
horizontal directions, i.e., it has top, lateral and
bottom boundaries. Only the last one has physical
meaning, the others are introduced only for com-
putational necessity. Usually, a greater number of
boundary conditions are used than required by the
model equations. As Oliger and Sunstrém (1976)

pointed out, conservation relations that are rep-
resented in a non-dissipative approximation (e.g.,
leap-frog) and that are overspecified, generate short
waves at the boundary that propagate into the
model domain with the fastest wave speed permit-
ted. Oliger and Sundstrom found that hydrostatic
models are ill-posed for any local® boundary condi-
tions, and some erroneous waves are expected to be
created at the boundaries in such a model. Some
modelers are using an upstream scheme near the
lateral boundaries to dampen such noises [e.g., En-
ger, 1998] while others are using radiative bound-
ary conditions [e.g., Orlanski, 1976]. In the present
model, a so-called flow-relaxation zone, or sponge
boundary condition, is used at the lateral bound-
aries [e.g., Davies, 1975]. The main idea is to add
a relaxation term to the governing equations of any
variable (®):

0®
S = (@)

(2.7)
where r is called the relaxation coefficient and ®,
the externally desired value of ® at the bound-
ary (it can be estimated from large-scale models),
r =r(z,y) > 0, continuous and non-zero only in the
vicinity of the boundary and reaching a maximum
at the boundary. The region, where r is non-zero is
called the flow relaxation zone. This increased fil-
tering cannot be applied abruptly near the edge of
the domain, as Morse (1973) pointed out, because it
would cause reflections, analogous to those in optics
when light crosses an interface of materials of dif-
ferent indices of refraction. A disadvantage of this
technique is that we have to add some extra grid-
points to the model domain which contribute to the
computational costs of our model.

At the top boundary, vertically propagating in-
ternal gravity waves can be reflected downward
[Klemp and Lilly, 1975]. To overcome these prob-
lems the top of the domain should be removed as
far as possible from the disturbance, up to the
upper portion of the troposphere, and a so-called
sponge-layer is introduced at the top boundary.
This sponge layer is an artificially enlarged diffu-
sion coefficient at gridpoints inside this layer. This
can dampen waves and therefore reflection is re-
duced. On Figures 2.2 and 2.3 the variation of
the exchange coefficient with height is plotted to
demonstrate this sponge layer. Note that these ar-
bitrary boundary conditions are nor physically nei-

5Local boundary condition which is generated at the
boundary and is not a function of interior gridpoints
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Figure 2.2: Turbulent exchange coefficient

ther mathematically adequate! Application of such
technical methods is required for the sake of nu-
merical stability. Introducing adequate boundary
conditions which are mathematically correct may
depend on future works.

2.3 Parameterizations

The lower boundary is the most important one.
Only that has physical meaning and the major part
of the mesoscale circulations are forced by surface
inhomogeneities.

At the surface, the heat balance equation is con-
sidered:

Qs+ LE=R,+Lin—oT! -G (2.8)

Here @) is surface heat flux, L is the latent heat of
evaporation (2400 kJ/kg) and E is water vapor flux,
R,, is net radiation, L is the long wave radiation of
the atmosphere, o is Stefan-Boltzman coefficient, T’
is ground surface temperature (skin temperature)
and G is heat flux down into or from soil layer.
Parameterizations for each term:

The net insolation is obtained by Kondo’s for-
mula [J. Kondo, 1967]:

R, = (1 — a)Cy Iy cos Z(0.57 — 0.016e,,

—0.0610g; em + (0.43 + 0.016e,,) 107013/ cos 2y

Figure 2.3: Turbulent exchange coefficient

Here, C is a factor of sunshine (Cy = 1 for cloudless
conditions, else C; = 0.7t + 0.3 where ¢ is duration
of sunshine), « is surface albedo, Iy is the solar
constant (Ip = 1370 W/m?), e,, is vapor pressure
near the surface in mbar and Z is the solar zenith
angle:

cos Z = sin ¢sin § + cos ¢ cos d cos x

where ¢ is latitude ¢ is solar declination and y is
the hour angle (x = 0 at 12 LST).

Long wave radiation of the atmosphere is ob-
tained by the following equation [J. Kondo, 1967]:

L, =oTh(1—(0.49 — 0.66,/e,)(1 — C4))

where T}, is air temperature near surface, Cs is an-
other parameter for cloud effect (Cy; = n(0.75 —
0.005e,,), where n is cloud amount).

Heat flux from or into the ground is written as:

o1,

0z

where T, is temperature, ¢, is heat capacity, g, is
density and K, is thermal diffusivity of the soil.

In the soil layer the thermal conduction equation
is solved:

G = —cy0.K,

or, .. 0°T,

ot 09222
The ground heat flux is calculated with the the pro-
file, obtained by Eqn 2.9.

(2.9)




2.3. PARAMETERIZATIONS

The surface fluxes are calculated with the
Monin-Obukhov Similarity Theory [Monin and
Obukhov, 1954]. The profiles in the surface layer
are assumed to be logarithmic:

9 x

5 = —pu(©) (2.10)
06 s
5 = _cpg*m a(8) (2.11)

where uy is friction velocity, ) is heat flux,  is the
von-Kérmén constant, { = 7 and L is the Monin-

Obukhov length scale:
= el
KgQs

Here T is averaged absolute temperature in the sur-
face layer. The profile functions (par(€), e (§)) are
obtained by J. Kondo (1975):

om(§) =
or(§) =

(1—-16¢)~1* for £ <0
(1-16¢)712 for £ <0

em(§) = pu(é) = 1+ 6¢ for £ < 0.3
= (14+22.8Y2 for&>0.3

Substituting these expressions into Eqn 2.10 and
Eqn 2.11 and integrating the result from zy to the
top of the surface layer, h = 20 m (to the lowest
gridpoint of the model), gives expressions for @
and uy.

The vapor flux E for the estimation of the latent
heat flux is parameterized as follows:

do — ¢

FE =
Bokuy U,

(2.12)

where evaporation efficiency 3 is obtained by the
canopy conductance method:

Gs

B:kau*—l—Gs

where the canopy conductance G4 is an external
parameter. The stability function for vapor ¥, is
assumed to be equal to that for heat

h
T, =0y = / —“OHZ(S) dz

Z0

and specific humidity of air at the surface, or more
precisely at the zg level (go = q(z = 20), is written

as:
_6.22¢,(T)

© = 50378,

assuming saturated air at the surface. Lowe’s equa-
tion (which is a sixth order polynomial) is used to
calculate vapor pressure:

es = a1 T + asT? + asT?® + asT* + asT° + agT®

Eqns 2.8-2.12 constitute the basic equations for the
surface layer. These form a complete set in the
dependent variables T, ux, Qs and E. The equa-
tion system is solved by a kind of Newton-Raphson
method. The first-guess values are assumed for the
neutral case and iteration is executed 6 times.

Note that in this model phase change is consid-
ered only at the surface layer, otherwise water vapor
is dealt as a passive scalar quantity, i.e., only advec-
tion and turbulent transport terms are assumed in
the calculation, and source/sink terms (e.g./ con-
densation) are neglected. This can result in false
super-saturation conditions. Release of the latent
heat of condensation need to be considered through
the so-called moist adjustment method, for exam-
ple.

In the calculation of the concentration of carbon-
dioxide the contribution of surface vegetation is as-
sumed to be the sum of the uptake by photosyn-
thesis and the release by respiration processes. For
the prognostic equation of C'Oy concentration the
following parameterization is assumed to calculate
CO4 fluxes at surface:

bR,

Eco, = —
CO2 1+aR, R

where a and b are external characteristic parameters
of surface vegetation. Respiration R is given by the
following expression:

R = RyQ ™"

where Ry = 0.102 m 257!, Q = 2.5 and ¢ is air
temperature in degrees centigrade.

If any information about the anthropogenic heat
and CO, emission are available, contribution of
these data are assumed at the surface. The emission
of a large stack contributes to the concentration of
the grid point closest to its effective stack height. At
the calculation of the effective stack height, plume
rise is considered through the concave equation, as
follows: Let the height of the stack be h, the amount
of the discharged gas be X [m®h~!] and the tem-
perature of it be T, [Kelvin]. Air temperature T'(h)
and wind (u(h),v(h)) are obtained at the height of
the stack with linear interpolation between the two



closest gridpoints vertically. The concave equation
for the plume rise is:

Je XAl
AR = 0175 2e2 20

EEE
where:
o] = Vu? +v2 if this is larger than 0.4
1 04 else
and
At =T, — T(h)

The emitted gas is considered at the gridpoint
which corresponds to the height h + Ah.

2.4 Closure

The vertical diffusion is parameterized using K-
theory, a first order closure. Values of Ky'* and
KY in Eqn 2.2,2.3,2.5 are obtained as a function of
the flux Richardson number (Ry)

ww g0, 0U §3/2 ‘
K" = BIGE| LSy (1 - By)

ou SM

K9 _ l2 M 1— 1/2
L= BIg S~ Ry)
when Ry < Ry, and
K{ =K' =1.0[m?s

otherwise. The stability functions are:

Sy = Ll=C2HB Rsp1—Ry Rf3—Ry
M = °CC? "G Rsp—R; 1-Ry
_ B Rfl—Rf

Su = CC.Cir 1—Ry
I= fif_z [Blackadar(1962)]
(o]

Here the following values were used for the symbols
above: Rp1 = Ry, = 0.29, Rpp = 0.33, Ry3 = 0.45,
Chy =15, C; = 065, G = 232, Cir = 3.2,
B =267, H =17, C = 0.203 and lp = 100 m.
Basically this is a level 2 closure [Mellor and Ya-
mada, 1974] with some correction by adding the ef-
fect of buoyancy [Gambo, 1978]. The bulk Richard-
son number Ri is calculated directly from the model
variables, and flux Richardson number Ry is derived
as follows:

Ry (2.13)
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from the expression for K" K above:

K‘Qj’v _ S

K~ Su
Substituting into 2.13 gives the next quadratic ex-
pression for Ry as a function of Ri:

R; =0.91(0.248 + Ri — V/Ri? — 0.23Ri + 0.62)

Note that the vertical diffusion coefficient is a func-
tion of the Richardson number, which is function
of the temperature gradient, therefore the diffusion
coefficient has a daily variation, on Figure 2.2 the
vertical profiles of the diffusion coefficient is plotted
at different times of the day.

Diffusion in the horizontal direction is assumed
to suppress numerical instability and has no physi-
cal meaning. The values for the horizontal diffusion
coefficients were fixed by trial and error. Radiative
transfer that works to back the temperature profile
to initial lapse rate, is assumed. A Newtonian type
cooling is introduced with a relaxation time (7) of 3
hours. This process is important, in particular, for
cooling in a basin [Kondo, 1986] stable layer formu-
lation [J. Kondo, 1976] and for cooling of the at-
mosphere which was heated by sensible heat trans-
fer from the surface in the daytime. When large
scale data are also given as boundary conditions
for the calculation, Newtonian cooling is assumed
to work back the temperature profile to the inter-
polated large-scale gridpoint value, with the same
relaxation time:

0=0-2tw_ By
T

where Bt is the original temperature profile. For-
mally, this means that a nudging term is added to
the governing equation:

06

E - = G0 (0Observation - 9) (214)

where the nudging coefficient is the inverse of the
relaxation time (Gy = 1). Wind components are
treated in a similar way: replace v and v with 6
in Eqn 2.14. This kind of dynamic initialization
technique has been suggested by Hoke and Anthes

(1976).

2.5 Numerical solution of the
model equations

The model equations (Eqns A.4-A.8 in Appendix
A.2) form a set of coupled partial differential equa-



2.5. NUMERICAL SOLUTION OF THE MODEL EQUATIONS 9

tion, which cannot be solved analytically but have
to be discretized and solved on a finite grid mesh.
Some variables (e.g., u, v, 8, q) are predicted by
prognostic equations, while others (e.g., §, ) are
obtained through diagnostic expressions. Some of
the terms are dealt with separately (e.g., vertical
diffusion), using the time-splitting (or Marchuk-)
method.

2.5.1 The advection scheme

Discretization of the advection term is based on the
method described by Arakawa (1972). The basic
idea of the method is a staggered grid network for
u, v and € in the horizontal plane and for @, =«
and $ in the vertical direction (this is the so-called
Arakawa-grid or C-grid). Variables for each grid-
points are obtained by linear interpolation. Then
the Arakawa scheme is used, which conserve both
quadratic quantities (i.e., kinetic energy and enstro-
phy) and therefore ensure that no systematic one-
way energy cascade occurs [Arakawa, 1964]. Finite
difference analogues of the advection terms in Eqn
A5, as an example to the Arakawa scheme are pre-
sented in Appendix B.1. The Leap-frog scheme is
used for time integration of the advection term and
a forward step is used every 20 steps to remove the
computational mode and the large frequency noise
caused by the departure of this computational mode
from the physical mode (This large frequency noise
appears even on the diagram of the model variables,
as can be seen on Figure 2.4, for example).

2.5.2 Diffusion

In the horizontal diffusion terms of Eqns A.5-A.8
the terms (%K 8% and BQK 8@ are much greater
than the other terms, so tlyle otllllers were neglected.
Horizontal diffusion is not considered for physical
meaning, but so as to suppress numerical noises.
Horizontal diffusion coefficients are obtained by the
method of Takano (1976) with some simplifications.
The expression for the horizontal exchange coeffi-
cients for any variable (®) is as follows:

Kp = ACa|®ip1 g + Pimi ik + Piji et

i1k — 4Pkl
where A = Az = Ay, and C4 = 0.0002 tentatively

fixed by trial and error. If this expression gives

P P
IZ—"; smaller than 0.0001 or larger than 0.002, % is
put equal to these threshold values. In contrast to

velocity, potential temperature can have large verti-
cal variation, neglecting those terms containing the
difference of the height of the iso-s surfaces (terms
containing %52) can lead to false diffusion of heat.
The diffusion coefficient for heat is calculated in the
same way as for momentum, but no minimum value
is given. For the formula of each diffusion term see
Appendix B.2

Time integration is performed by forward ex-
plicit scheme with a timestep of 2At.

The diffusion term in the vertical direction is
maintained implicitly to reduce it’s computational
cost. An explicit solution requires an extremely
short timestep (i.e., At < ZAKZZ
zoidal method is used, inste;d. For a two dimen-
sional array in the z—z plane Gaussian elimination
is performed and the same timestep as for the ad-
vection term is assumed.

)- An implicit trape-

2.5.3 Pressure Gradient

The pressure gradient term in the momentum equa-
tion for u (Eqn A.5) is written as:

om g0

oD{" — (s - 1))
The vertical grid for 7 and © are staggered so the
scheme for pressure gradient term of u has the form
as written in Appendix B.3. Time integration for
pressure gradient term is maintained in the same
way as for the advection term, i.e., leap-frog scheme
with the same timestep, and using a forward scheme
every 20 steps.

2.5.4 The Coriolis term

On the C-grid u and v are staggered in the horizon-
tal plane, so v for u gridpoints is calculated with the
average of the 4 v gridpoints around u. This aver-
aged value is used for the calculation of the Coriolis
term:

1
1 Wirgy F vy v+ v )

Time integration is the same as for the pressure
gradient term.

2.5.5 Hydrostatic Equation

The mesoscale scaled-pressure deviation () is ob-
tained by the integration of a diagnostic equation
derived from the hydrostatic equation (Eqn A.7). =
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and 6 have the same gridpoints on the iso-s projec-
tion, and are staggered vertically. In the execution
of the integration, 7 is set equal to zero at the top
boundary and integrated from top to bottom:

g0

@Di,jASk

Note that the vertical index (k) increase from top
to bottom, i.e., K = 1 at the top of boundary.

Tijk = Tiyjk—1 —

2.5.6 Continuity Equation

The non-dimensional vertical velocity ($) is to be
obtained by the integration of the continuity equa-
tion (Eqn A.4). The $ and u, v planes are staggered
vertically, and the projection of $, u and v are stag-
gered in the x and y directions, respectively. Thus
the scheme for continuity equation should be writ-
ten as:

Fivgjn = Fig g+ Gigige = Gijtn
+(Sijnty — Sijr-3)/As =0

where

Fiirjn=5WDivrjk + Dijluigs jx

N = N =

Gijrin = 5Dijrie + Dij)ugjya g
Si7j,k+% = Di7]')‘§i,j7k+%

At surface § = 0 and integration is executed from

bottom to top.

2.6 Initialization

On the mesoscale, adjustment is considered to the
geostrophic wind, in contrast to pressure or geopo-
tential height in synoptic-scale models. The model
do not have a latitude—longitude projection, so
Coriolis terms are non-separable, which makes nor-
mal mode initialization even more difficult. In addi-
tion, some important model variables are not initial
parameters, but used in the calculation of the model
variables (e.g., exchange coefficients, surface param-
eters, vertical velocity, etc.). Calculation should be
started well before the period we are interested in
(dynamical initialization). The spin-up time is the
shortest time, if we start the integration at noon
(12 LT). This spin-up time can be visualized on
top panel of Fig 3.13: the initial kinetic energy de-
creases until the steady state, which corresponds
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wind veocities (U,V) and potential temperature timeseries
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Figure 2.4: Top: Time variation of the dif-
ferent variables. Bottom: Initialization in a
mesoscale model [Kessler, 1982].

to the mesoscale balance state. On top panel of
Fig 2.4, which is an output from this model, we
can see that the wind components are changing in
time, until the steady state is generated. After 400-
500 timesteps the order of their magnitude becomes
constant.



Chapter 3

Adaptation of the NRIPR Model

Mesoscale meteorological numerical models can-
not be used for different environments directly.
Mesoscale phenomena are mainly topographically
induced, or heterogeneities of the surface param-
eters are responsible for the circulations. If we
simply change the model topography and landuse
data fields, the model has to be tested before estab-
lishing the fidelity of the model simulations. After
the proper data fields have been generated for the
model, simulations should be performed for simple
cases to evaluate the results.

So as to run the NRIPR mesoscale model with
respect to only the meteorological variables, the fol-
lowing database is needed in the proper form:

1. Topography data, average elevation for each
gridbox

2. Different land cover databases:

e land-sea index: different calculation is
performed over land and sea surfaces

e area (m?) for different categories of lan-
duse in each gridbox for the calculation
of surface heat balance

e fraction of vegetation (%) in each grid-
box

3. large-scale meteorological data, and initial
data fields

3.1 The Topography Database

The first run was performed on a topography
database, which was obtained from the Digital
Telecommunication Map (DTM3000) dataset. This
dataset was generated at the Experimental Institute
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of the Hungarian Post! in the late 1970’s. The reso-
lution of the original dataset is approximately 3 km
in the x and y directions or more precisely, the longi-
tudinal resolution is AX = 150" and the latitudinal
is Ap = 100", For each gridbox the maximum ele-
vation, the deviation of the elevation, and some land
cover information? are given, based on a NATO
aeronautical chart (1:100000) from the 1960’s. Sur-
face informations have changed a lot since then, so
another database is used for the present calcula-
tions. This latter database was generated from a
portion of the EROS? global land cover and topog-
raphy dataset, from a Lambert Azimuthal Equal
Area map projection, which has a 1km nominal spa-
tial resolution based on 1 km AVHRR? data. The
use of this dataset is convenient, because land cover
information with the same parameters (i.e., same
projection, resolution and grid network) is avail-
able for the calculation. In addition, using an au-
tomatically generated database preclude the pos-
sibility of containing such errors, as can be con-
tained in the first database, which was generated
by human effort. This database can be obtained
through anonymous file transfer protocol® in com-
pressed binary files. Data of the considered area
were taken from the file for Eurasia, optimized for
Europe, transformed from Lambert Azimuthal Pro-
jection to Cartesian, and put into ascii files, suitable
as input for our model. A chart showing the con-
sidered area in Lamberth projection is presented in
the down left panel of Fig 3.1. The resolution and
extension of the model domain can be chosen before
each run.

Ithe forerunner of todays Hungarian Telecommunication
Company (MATAV)

2with only 4 different categories

3Earth Resources Observation System

4Advanced Very High Resolution Radiometer

Sedcftp.cr.usgs.gov
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o

model domain E19.5, N47; dx=dy=10km

Figure 3.1: The model domain. Top: Database of the Eurasian region in Lambert Azimuthal
equal area projection. Bottom left: The considered area in Lambert projection. Bottom
right: The model domain for the standard run in Cartesian system.
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However, the domain usually used in the standard
run is one with a horizontal extension of 600 kms
both in z and y directions, with a spatial resolution
of 10 kms centered at £19.5° N47°, a location in the
middle of the Carpathian basin (see Fig 3.1 down
right). Representative elevation for each gridbox is
simply calculated using arithmetic mean of the con-
tributing data for that gridbox. Using for example
an interpolation based on the weight inversely pro-
portional to the distance from the gridpoint can re-
sult in larger deviation in altitude. Although the
topography data field should be smooth enough, to
avoid erroneous gravity waves, which can generated
by the interaction between flow and topography.

3.2 Model Evaluation

Pielke (1984) pointed out six criteria for the eval-
uation of a mesoscale meteorological model. These
requirements are:

1. The model must be compared with known an-
alytic solutions

2. Non-linear simulations of the model should be
compared with other models, which have been
developed independently

3. The mass and energy budget must be com-
puted to determine the conservation of these
important physical quantities

4. The model predictions must be quantitatively
compared with observations

5. The computer logic of the model must be
available on request, so that the flow struc-
ture of the code can be examined

6. The published version of the model must have
been subjected to peer review

As the writer of this paper has worked with the
source code of the model, investigated and become
familiar with the computer logic of the model, which
satisfies criterion No.5. In these sections model
results are compared with observation (criterion
No.4.) or other model results (No.2.), if available.
For some simulated events brief theoretical discus-
sions are also included (criterion No.1).The energy
budget has also been calculated, when seeking for
any large frequency noises (No.3).
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3.3 Dynamical Test

After obtaining the topography dataset, some runs
were performed to test it’s suitability. These runs
were performed with arbitrary land cover data, i.e.,
the same type of land cover (grass) were considered
for all gridpoints. Horizontal variation of surface
parameters (surface temperature and fluxes) was
eliminated, and only the effect of the interaction
between the flow and topography was studied this
way. Vertically 35 gridpoints were considered up
to 5400 m height and a 1500 m thick sponge layer
(uppermost 6 grids) was used. Initial conditions for
the first three run were neutral stratification (with
an initially constant 299 K potential temperature),
light synoptic breeze (ug4,v,) = (0,2) ms™" with no
vertical shear. All calculations were performed at
204 Julian day, i.e., 23 July. Time variations of the
vertical profiles of temperature and wind were stud-
ied in one gridpoint in the center of domain. The
terrain of this site is relatively flat, free from large
deviation in the altitude within 50 km radius (see
Fig 3.1). The energy budget in the model calcula-
tion (Fig 3.3) was was compared to measurements
[e.g., Oke, 1987](Fig 3.2). According to the diur-

600 1 ¥ 1 1 1 I* T ) 1 I 1
. Qe = et radiafion
L | .
\ ™
£ £ Qg = latentheat
S -
X 0 =i e
& R ——
U. 0 gt + ‘M ) Yy
~Qg= et o roung™
,200 L ¢ I Il i { [ 1 | 1

Y R R T R
Time (h)

Figure 3.2: Measured energy balance compo-
nents [Oke, 1978]

nal cycle of surface heating, air temperature within
the lower layers has a daily variation, too. Time
variation of the lower 800 m temperature and some
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Energy balance components: fluxes at surface [W/m*2]
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Figure 3.3: Time variation of energy balance
components in the calculation.

significant temperature profiles are shown on Fig
3.4. As we can see, a fairly unstable surface layer
during the day and a slightly stable layer develop-
ing at night, due to heating or cooling of the lower
layers by surface. This generates intensive verti-
cal turbulent exchange at daytime, while in stable
case vertical exchange is negligible (see Fig 2.2).
Vertical variation of the wind velocity components
show a veering of the Ekmann type: the wind direc-
tion changes counterclockwise at lower levels (Fig
3.5) In addition, wind speed increases and become
super-geostrophic during the nighttime stable con-
ditions. This feature can be characterized as a Low-
Level Jet (LLJ) event, if we define LLJ as a verti-
cally thin, horizontally extensive layer of air, trav-
eling at a super-geostrophic speed, causing a wind
maxima within the lower layer, i.e., below 1500 m
[e.g., Bonner, 1968]. LLJs occur as a result of a
variety of forcings. Among them are synoptic-scale
baroclinicity, fronts, baroclinicity due to sloping ter-
rain, advective accelerations, confluence and duct-
ing around mountain barriers, land and sea breezes,
mountain and valley wind and inertial oscillations
[Stull, 1988]. A stable stratification is generally
needed for LLJ, otherwise vertical mixing tends to
eliminate wind maxima. In the present calculation
at this location an inertial oscillation could cause
super-geostrophic wind speed during stable condi-
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Figure 3.4: Time and space variation of poten-
tial temperature

tions. As it will be shown below, an inertial oscil-
lation is a possible analytical solution for the gov-
erning equations of the model (in the absence of
frictional forces, an assumption that can be made
only with a stable stratification).

Let us consider the model equations for the hor-
izontal wind velocity components u, v in the Carte-
sian system (Eqn 2.2-2.3) using the Lagrangian
time derivative notation, neglecting the mesoscale
pressure gradient terms, and using the notation
V* = (ug —u) —i(vy — v), where i = /—1. V*
expresses the geostrophic departure vector on the
complex plane. The calculations were performed at
constant geostrophical forcing, uy = v, = constant
in time. At night turbulent exchange coefficients
are negligible, so vertical momentum flux vanishes.
The horizontal momentum equations can be written
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Figure 3.5: Time and space variation of wind. Top: Time variation of vertical cross-sections

and v (right) wind velocity components. Bottom: The same for the wind speed
(left) and profiles of wind speed at different times of the day.
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in complex form:

av>

= _ifV*
dt if
This has the solution:
V*=Voe !

where Vj is to be determined from the initial con-
ditions (complex geostrophic departure at sunset).
This is the equation of a two dimensional harmonic
oscillator, with a period of 2& 22 14 hours at midlati-
tudes. The wind vector will follow a Lissajous curve
in the (U, V) phase space (Fig 3.6). Essentially, the
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Figure 3.6: Inertial oscillation of the wind

[Taken from Stull, 1988]

nocturnal stable layer is non-turbulent, decoupling
the air above from significant frictional surface in-
fluences. Thus the pressure gradient and Coriolis
forces are left in an attempt to balance one another,
with the initial perturbation being the removal of
frictional forces. The Coriolis force accelerates the
air unhindered by frictional forces. The adjustment
overshoots, and an undamped oscillation develops.
As mid-latitude nights last between 8 to 16 hours,
the inertial oscillation may not even complete one
period before daytime mixing destroys it. As it can
be seen on Fig 3.5, shortly after sunrise (17th hour
of calculation), the low-level wind maxima disap-
pears.

CHAPTER 3. ADAPTATION OF THE NRIPR MODEL

Since the model was tested successfully at NIRE
[Kondo, 1989] and for light synoptic breezes seemed
to provide reliable results, a dynamical test for
strong synoptic-scale wind was performed. Initial
conditions for this run were strong geostrophic wind
((ug,vy) = (1,10) ms~! with a vertical shear from
ground up to 1000m: 8,u, = 0.001 s~!, d,v, =
0.008 s71). Temperature stratification was still as-
sumed to be statically neutral. The time step for
the numerical integration, as in the previous runs,
was At = 30 s. In the 40th step numerical insta-
bility occurred. A snapshot in two horizontal cross-
sections (20m and 4000m above terrain) show the
typical state of the model variables after 38 steps of
integration on (top panel of Fig 3.7). At the 41st
timestep Not A Number (nan) values appeared in

| the array of the prognostic variables. Such numeri-

cal instability can be caused by a variety of reasons.
As the instability occurred during a run performed
for an initially strong synoptic wind, an obvious
reason for it could be the failure of the Courant-
Friedrichs-Levi (CFL) stability criterion. The CFL
for the linear advection term is:
U,()At

= <1
¢ Az —

(3.1)

where ug is the magnitude of the linear advection
velocity®. For non-constant advection velocities, a
local Courant number can be approximated by us-
ing the supremum of the wind speed as an estimate
of ug. Although the advection velocity was larger in
this run than in the previous one, the grid interval
is 10000m, and the timestep is 30 s, which give a
Courant number on the order of 10~2. It is obvious
that this instability was caused by another reason.
The stability parameter of the parabolic term (dif-
fusion) is the Fourier number, which is inversely
proportional to the square of the grid interval in an
explicit scheme. Vertical diffusion is dealt implic-
itly which is unconditionally stable, for the horizon-
tal diffusion coefficient a maximum value was given,
which still gives a Fourier number less than unity
(Section 2.5.2). Another run with the same condi-
tions but using a much shorter timestep (At = 3s)
performed stable and realistic solution even after
1200 timesteps (Fig 3.7 bottom). This fact obvi-
ously shows that a disturbance, propagating much
faster than the advection velocity caused numerical
instability.

6C is often referred to as the Courant number
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Figure 3.7: v wind component at 4000m (left) and 20 m (right) above the surface, using
timestep of 30 s (top) and 3 s (bottom)
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For example, in a much more simple case, when
adjustment is considered through the shallow water
equation [Tank Model, e.g., Pielke, 1984], the only
other term is a linear advection term and a leap-
frog in time central in space scheme is used. This
gives the next CFL stability criterion:
(uo +VgH)At
Ci=— 7"
Az
As we can see, the phase speed of the shallow water
waves contributes to the speed considered, and this
gives a much stronger criterion than Eqn 3.1 for
the time step in a still linear system. Note that this
criterion is mainly determined by the gravity wave
speed. It is essential then to remove these gravity
waves from our model. For a primitive equation
model the stability criterion of the complete set of
equations is much more complicated.
There are three main sources of gravity waves in
a primitive model:

<1

1. Initial unbalance: if the initial conditions are
unbalanced, adjustment of the model can gen-
erate gravity waves. It is well known that
geostrophic initial conditions are not ade-
quate for a mesoscale model [Daley, 1991]

2. Physical parameterizations (e.g., convection)
3. Topography

Topography can generate a number of different
kinds of gravity waves (some examples are shown
on Fig 3.8 Top). Moreover if the Froude number of
the flow passing topography is becoming supercrit-
ical over the obstacle, an extremely large gradient
can occur at the surrounding area. This results in
a Hydraulic Jump under special conditions (Fig 3.8
bottom).

If such horizontally and/or vertically propagat-
ing large frequency waves once generated in the
model, they might be reflected and amplified by
non-adequate lateral and/or top boundaries, re-
spectively. In addition the model boundaries can
not only reflect, but even generate large frequency
waves, as mentioned in Section 2.2. The stability
criterion for such waves requires an extremely short
time step. It’s computational cost would be enor-
mous, SO it is necessary to remove these gravity
waves. To localize the trigger effect, several runs
were performed for the same initial conditions but
for arbitrary boundary conditions:

1. Run without topography to test the effect of
the physical parameterizations

©

Figure 3.8: Top: Different gravity waves gen-
erated by the topography Bottom: Flow
around an obstacle for different Froude num-
bers, Hydraulic Jump

2. Run without parameterizations to test the ef-
fect of topography

3. Run without either topography or parameter-
izations to test the dynamics of the model

Figure 3.9 shows contour isolines of v wind veloc-
ity component in a zonal cross-section of the model
domain (in the z—z plane) at the end of the first
hour of calculation of a 1. type run. This is an
obvious evidence in support the fact that large fre-
quency gravity waves were generated at the lateral
boundaries and travelled with a phase speed on the
order of 40 ms~! into the interior of the domain.
They were superimposed on each order, and re-
flected back from the boundaries. This effect was
systematic and undamped, and so produced a fa-
tal rise in the wave energy. Numerical experiments



3.3. DYNAMICAL TEST

proved that this process developed approximately 5
times faster when topography was also included in
the model run.

19

mentioned in Section 2.2, this top boundary should
be removed as far, as it’s possible from the distur-
bances.

U after one hour

Figure 3.9: Gravity waves generated by the
lateral boundaries

The instability” arose at the 41st timestep in a
run, when the real topography was assumed (Fig
3.10 top). To test the sensitivity of the boundaries
for topography, the terrain near boundaries was set
equal to zero (i.e., flat terrain) for two gridpoints
near the lateral boundaries (Fig 3.10 middle):

8zG _ aZG —0

dr oy

Instability occurred only after 280 steps compared
to 38, when topography was not smooth, which
shows how sensitive the model is to boundary con-
ditions. In the dynamical run (i.e., no topography
or parameterizations), instability occurred after 850
timesteps.

The above facts show that the boundary con-
ditions were not adequate for such initial condi-
tions. These tests supported the fact that limited
area models are usually very sensitive for the lat-
eral boundary conditions. In addition, the model
boundary coincides with the largest deviation in
the topography. As further numerical experiments
showed, some vertically propagating waves were re-
flected from the top boundary, too. As already

“Instability here is referred to as the first occurrence of
the nan values
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Figure 3.10: Topography cross-sections

It is easy to show that viscosity can dampen
short waves for a Fourier number > 1/4, while it
won’t affect the long waves. Therefore, viscosity
can be a powerful tool in damping large frequency
noises. On the other hand, assuming too large a vis-
cosity can cause unrealistic damping, and therefore
an artificially loss of model energy.

To overcome numerical instability and remove
gravity waves, the following steps were taken:

1. A flow relaxation zone for 10 gridpoints at
each boundary is to be considered (see Eqn
2.7 in Section 2.2 for the scheme), where the
relaxation coefficient r is expressed as a func-
tion of distance from the lateral boundary:

r=-—
7
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Figure 3.11: East—west cross-sections of temperature at 13, 15, 19, 5, 10 and 12 hours,
respectively.
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where ¢ is the distance from the lateral bound-
ary and K is tentatively put equal to 0.5.

2. The model topography was smoothed in the
flow relaxation zone [i.e., elevation of the
ground in the flow relaxation zone is equal
to the elevation of the ground at the inner
boundary of the flow relaxation zone (see Fig
3.10 bottom)]

3. Vertically 49 gridpoints were assumed up to
9600 m, instead of 35 gridpoints up to 5400
m. (Note that on the bottom figure of 3.10 the
model domain is vertically more extensive)

4. A deeper and stronger sponge layer was pre-
scribed for the top boundary (16 vertical grid,
from 5100 m up to 9600, instead of 3900-5400
m, compare Fig 2.2 top and bottom)

This version of the model was tested for different
initial conditions.The model performed stable run
even in case of strong synoptic wind (> 20ms=!!).
Different vertical cross-sections in meridional and
zonal directions were plotted to study the behav-
ior of large frequency gravity waves. Horizontal
cross-sections were plotted at different levels, so
that the spatial variation of each variable within
the whole model domain can be visualized at dif-
ferent timesteps. These figures and diagrams visu-
ally proved that the above listed techniques over-
come the amplification of the wave energy. The
inner domain of the model was free from large fre-
quency waves, though some wave-like structure usu-
ally occur at the inner boundary of the relaxation
zone. These disturbances could not escape from
here, and no reflection occurred into the considered
area. Moreover, these steady waves usually became
weaker during the run. If some initial noises had
appeared in the fields of variables at the end of
the first hour, such noises “died-out” during the
model run. For example, Fig 3.11 shows zonal cross-
sections in the middle of the model domain dur-
ing run with strong synoptic-scale wind at different
times of the day. The initial potential temperature
lapse rate was neutral up to 1000 m (i.e., % = 0),
and slightly stable (% =4 £ ) above. It can be
seen on these diagrams that there is a sharp con-
trast near the relaxation zone. This contrast more
emphatic in the fields of velocities especially in the
case of light geostrophic wind. This shows that the
sponge boundary condition was applied abruptly,
which can bias the model results, as quoted Morse
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in Section 2.2. The spectral HIRLAM uses a cosine-
shape boundary relaxation factor [Gustafsson et al.,
1988] and the MIUU uses one inversely proportional
to the square of the distance from the boundary
[Enger, personal communication]. To dampen this
sharp contrast, the expression for the relaxation co-
efficient r was changed to a sinusoidal function. In
addition, the K coefficient also depends on the mag-
nitude of wind speed (adaptive relaxation):

K

5(1 — cos(%))

r =

where 7 is the horizontal index from the lateral
boundary and

|

Recently, a relaxation factor inversely proportional
to the square of the distance from the lateral bound-
ary was used. It yielded the best results:

K
i2

0.3 if [v]<5ms™!
0.5 otherwise

T =

For the comparison of the linear sin-shape and
quadratic relaxation factor, see Fig 3.12 left. On the
right panels of this figure are outputs from two runs
with the same initial conditions, but with different
relaxation factors. As we can see, the sine-shaped
factor provides a much smoother transition to the
relaxation zone: compare right top and bottom fig-
ures. This scheme gave much better results in the
latter runs than the linear boundary factor. The
quadratic relaxation factor was used in the tests of
the landuse dataset, and was kept in the present
formulation of the lateral boundary condition.

To ensure all large frequency disturbances have
been removed from the model, time variation of
each variables in one single gridpoint (in the middle
of the domain) were displayed. The remains of any
possible large frequency noises should appear on
such diagram (for example Fig 2.4 top). The only
systematic large frequency noise is one with a pe-
riod of 20 timestep. This is the result of the applied
numerical scheme: an Euler forward scheme is used
every 20 step to adjust the computational mode to
the physical mode. The magnitude of this noise is
negligible in all cases. Time variation of wind ve-
locity components close to the ground (20m) shows
very similar behavior to those obtained from other
models [e.g., Kessler, 1982, Fig 2.4 bottom] which
satisfies Pielke’s second criterion of model evalua-
tion.
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Figure 3.12: The boundary relaxation factor
(left) wind cross-section from calculations us-
ing linear (right top) and sine-shaped relax-
ation factor (right bottom)

It also can be seen on these diagrams that within
the first hour of integration some oscillation occurs
according to the initialization processes. It’s obvi-
ous that after 100-150 timesteps these fluctuations
vanish. There are two possible reasons for such
damping:

e Dissipation, due to too large a viscosity value

e An internal balance, developed by the model
dynamics

If the first reason is responsible for the lack of large
frequency noises, than the model must be over-
damped. If the second is the possible reason, we
can say that the model is suitable for dynamic ini-
tialization. To locate the reason of this damping
the time variation of the model energies must be
investigated. If the model is overdamped, the ki-
netic energy should decrease continuously. On the
other hand systematic increase of the model energy
is an indicator of a possible instability. Thus the
investigation of the energies is a useful diagnostic
tool to examine the fidelity of the model [Pielke,
1984].

On Fig 3.13 top two different kind of energies
are plotted. Kinetic energy of the model is defined

as:
K::/gv2 av
Q

where g is the density of air, v> = v-v and Q € R®3
denotes the whole model domain. The Convective

Kinetic and available potential energy of the model
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Figure 3.13: Top: The model energies. Bot-
tom: For the calculation of CAPE

Available Potential Energy (CAPE) is the integral
of the parcel buoyancy in the vertical direction for
the positively buoyant layer (i.e., from the level of
free convection (LFC) to the Equilibrium Level or
Limit of Convection (EqL). On Fig 3.13 bottom the
shaded area is proportional to the CAPE. In the cal-
culation CAPE was determined using the following
formula:

CAPE :://_ "I N6(2) dz
D Jz @

=ZLFC

where g is acceleration due to gravity (9.81[ms™!])
© is averaged potential temperature for the
model domain, Ae(z) is eliftedparcel — Oenvironment
(convection is assumed to be adiabatic process
(Briftedparcer = const.) and D € R? is the model
domain in the horizontal (z—y) plain. CAPE is
used to obtain the vertical velocity scale (wocapr =
V2 - CAPE) assuming that all potential energy is
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converted into kinetic energy [Rogers et al., 1985].
In the spin-up time (first 2 hours) the kinetic energy
is decreasing logarithmically. As the model param-
eters reach their steady state value and dynamical
balance is generated, there is a short period when
the kinetic energy is slightly increasing, after which
it is fairly constant. There is no significant change
in it’s value. These facts prove that an internal
mesoscale balance is responsible for the relaxation
of the initial noises. It is also an indicator of the nu-
merical stability of the model, otherwise it should
increase continuously.

Fig 3.12 right shows that the largest deviations
of the flow are still in this relaxation zone near the
lateral boundary. There are two possible way to
find out if the topography or the possibly still not
adequate boundary is generating such noises:

e The model domain should be enlarged at least
4 times greater, and the lateral boundaries
should be removed far from the ridges of the
Carpathian Mountains. This has enormous
costs, which is beyond our computational fa-
cilities.

e A less expensive way to investigate the effect
of the topography is to use an artificial to-
pography database: simple uniform topogra-
phy (isolated hill or ridge) in the center of the
domain. This is much more economical, and
the results can be evaluated through compar-
ison with other model results, as this test was
performed by nearly all modelers in the eval-
uation of their models.

The second method was chosen, and the results
were compared to other model outputs. Three main
cases were investigated. In the first case, bell-
shaped hill was taken in the center of the domain.
[Fig 3.14 top]. The surface of this hill was deter-
mined using the following formula:

L= { Zmaz — 2555 (1 —cos(F)) ifr < R
g 0 otherwise

where 2,4, 1s the elevation of the hill-top (1000 m)
R is the radius of the hill (100 k) and r is the dis-
tance from the center of the domain. In the second
case a cone-shape hill was considered (Fig 3.14 mid-
dle) to examine the effect of a sharp mountain peak.
The third run was performed above a mountain
ridge perpendicular to the direction of the main flow
(Fig 3.14 bottom). All three runs resulted in numer-
ically stable and realistic solutions. Time variation

of some variables and the model energies were plot-
ted to prove visually the lack of any instability or
false wave patterns. The model seemed to be free
from any large frequency waves even in the case of
sharp peak or ridge. Model results were evaluated
by qualitative comparison with other model results
[with hydrostatic [Klemp and Lilly, 1978] and non-
hydrostatic [Durran, 1981] simulations of flow over
mountains]. Though these simulations were per-
formed at stronger large-scale synoptic wind and
stable stratification (0,0 = 4 K/km) in the whole
layer (in our simulations stratification were neutral
up to 1000 m, and stable 9,0 = 4 K/km above)
our hydrostatic model gave almost identical results
(see Fig 3.15). Fidelity of the model results for sim-
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Figure 3.15: Model evaluation of flow over ob-
stacles: Left: Hydrostatic (top) and non-
hydrostatic (bottom) simulations of other
models. Right: flow over a cone-shaped iso-
lated hill (top) and ridge (bottom). Contours
of potential temperature are plotted on all
figures.

ple uniform cases is necessary but not sufficient ev-
idence to prove the fidelity of the model over more
general complex structures. The accuracy of the
model dynamics for the latter case should be stud-
ied through comparison of the model results with
observations and may depend on future works.
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3.4 The Landuse Database

As already mentioned in the introduction of this
chapter and in Section 2.3, the accuracy of the lower
boundary condition is essential for a mesoscale
model. Mesoscale circulations are strongly ther-
mally induced, generated or influenced by the hori-
zontal variation of the model variables in the surface
layer. (e.g., sea or lake breezes, urban circulations,
etc). The values of those variables are obtained
from surface parameters, using parameterizations
described in the model description. For this rea-
son, it is essential that parameters defining the land
cover landuse should be given precisely for the sake
of the fidelity of a mesoscale model. These parame-
ters can be obtained by using a land cover database
prescribing a certain value for each parameters for
every category in the land cover information. The
land cover dataset was generated from the global
land cover characteristics data base. The Lambert
Azimuthal Equal Area projection has 1km nominal
resolution and based on 1 km AVHRR data. The
IGBP® Land Cover Classification [Belward, 1996]
was used, which has the following 17 categories:

1. Evergreen Needleleaf Forest
2. Evergreen Broadleaf Forest

Deciduous Needleleaf Forest

- w

Deciduous Broadleaf Forest

ot

Mixed Forest
Closed Shrublands
Open Shrublands

Woody Savannas

© »® o

Savannas

10. Grasslands

11. Permament Wetlands

12. Croplands

13. Urban and Built-Up

14. Cropland/Natural Vegetation Mosaic
15. Snow and Ice

16. Barren or Sparsely Vegetated

8International Geosphere Biosphere Program
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17. Water Bodies

The spatial frequency distribution of each cate-
gories in the domain of the standard run are pre-
sented on Fig 3.16. As it can be seen, some cat-
egories have much greater significance than others
(e.g., nor 16th neither 17th categories appear in the
domain). As described in the description of the sur-
face layer equations (in Section 2.2), the following
external surface parameters are needed for the cal-
culation:

1. albedo (a, non-dimensional)
2. roughness length (2o [m])

3. thermal diffusivity (K, = v/g,[m?s™!], where
v is thermal conductivity [Jkg—'K '] and g,
is density of the soil [kgm~2))

4. volmetric ~ heat  capacity (C =
cg0g [Jm™3K™], where ¢, [JkgT'K™!]
is specific heat capacity and g is density of
the soil)

5. canopy conductance (G's [ms™])

6. coefficients for the calculation of the photo-
synthesis (a [m?*W 1], b[mg CO2m?s™1])

Originally, 13 categories were considered for the lan-
duse parameters (14 items in the above list), while
15 categories were considered in the vegetation cat-
egories (items 5-6). The 13 landuse categories were:

1. Sea

2. Evergreen Broadleaf
Evergreen Coniferes
Deciduous Coniferes
Deciduous Broadleaf Forest
Evergreen Broadleaf Forest
Mixed Forest

Temperate Grassland

© »® N e o e w

Bog

10. Arable Cropland
11. Rice

12. Urban

13. Water
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For vegetation the next categories were used for
Japan:

1. Rice Field
Arable Land
Orchards
Trees

Forest
Wasteland
Buildings
Houses
Main Traffic
Other Artificial Use
. Lakes

© % N e o s W

—_ = =
R

. River

. River Side
. Sea Shore
15. Unknown

The landuse and land cover data bases both con-
tain 17 categories now, as the IGBP dataset. In
Appendix C on Table C.1 the concordance of the
present datasets to the original ones are presented.
For the categories Savannas, Grassland, Snow and
Ice and Barren or Sparsely Vegetated there were no
concording values in the original dataset. Though
the two latter categories are not present in the do-
main of the standard run, for the sake of univer-
sality of the model, i.e., be suitable for other loca-
tions, it’s necessary to prescribe realistic values for
these categories, too. Table C.2 shows the values
of each parameter for these categories. In this ta-
ble those parameters not taken from Stull were ob-
tained from measurements by Lee (1978, page 84).
Snow and Ice parameters have a wide range. For
example, albedo ranges from 0.2-0.95 in the litera-
ture. Here, for simplicity, albedo was put equal to
0.4. Albedo and roughness length data for desert
were used for the category Barren and Sparsely Veg-
etated. Thermal diffusivity and heat capacity were
obtained using the corresponding data of rock. As
the number of categories have been changed, some
changes were to be made even in the source code
of the model. Some test runs were performed to
prove the fidelity of the new, Hungarian version of
the NRIPR mesoscale model.

—_ =
= W
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3.5 Concluding Remarks

The NRIPR mesoscale model has been adapted and
tested for use in Central Europe. The topography,
landuse and vegetation datasets were generated, the
boundary conditions have been modified to perform
suitable runs, even in a basin, where the model do-
main is surrounded by relatively high mountains.
The parameterizations have been modified accord-
ing to the new land cover landuse datasets. The
model has been tested. It’s sensitivity have been
checked with respect to both the model dynamics
and the surface parameters. These tests, after the
adaptation produced dynamically stable and real-
istic results for arbitrary initial conditions. Fur-
ther tests should be made to evaluate the model
for realistic initial conditions. It can be nested
into a regional LAM (e.g., Aladin). Implementa-
tion of the C'O5y version of this model includes the
adaptation of some additional datasets (informa-
tion of large stacks, anthropogenic heat flux, an-
thropogenic carbon-dioxide emission, etc).

As already mentioned in Section 2.3 the wa-
ter vapor and phase changes in the atmosphere
should be dealt more precisely in the model. In an
air quality model precipitation has a great impor-
tance. Parameterization of clouds (both mesoscale
and subgrid-scale clouds) and precipitation should
be included through the proper parameterizations.

By adding some other parameterizations of
other pollutants, (chemistry package) the model can
be used to assess the concentrations of any pol-
lutants in the atmosphere. This can be useful in
the assessment of new air quality standards, and
in helping governments and business companies de-
velop strategies for planning new industrial plants.
Accuracy of the model can be increased with the ap-
plication of parameterizations of convective clouds
or precipitation, for example. The meteorological
outputs of such a model can be used to generate
wind climatologies of a certain region, which is an
essential step in wind energy planning. Before or-
ganizing a field experiment, numerical experiments
should be made at the considered area with high
resolution, so as to optimize the expedition. Nu-
merical simulation of a field experiment can help to
find the most interesting sites of the considered area
(where to put the instruments). Numerical exper-
iments are less expensive, compared to a field ex-
periment, since they can be repeated for any initial
and boundary conditions, to study one particular
phenomenon. After the expedition, some unmea-



28

sured parameters can be calculated by running the
model with the measured data as initial and bound-
ary conditions. Finally, this model can be a power-
ful tool even for theoretical research. The investi-
gated phenomenon can be studied both in idealized
conditions, separately as it cannot be observed in
the atmosphere, and in it’s complex environment,
which is impossible analytically.
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Appendix A

The Model Equations

A.1 The Hydrostatic Equation

The Hydrostatic Equation can be derived from the third equation of motion: neglecting the Coriolis and

frictional forces:
dw  10p

dt 00z
On the mesoscale the ratio of the vertical acceleration to the pressure gradient term is usually much
less than unity [a representative value of this ratio is 0.0003 (Pielke, 1984)]. In that case, the vertical
acceleration term can be neglected', an assumption that yields the hydrostatic equation:

10p
——a. =9

00z
Substituting the Equation of State of Ideal Gas (% = %) and introducing the potential temperature,
defined by:
9 = T (L20)Ra/er
p

and the scaled pressure (or Exner function):

p da/c
(Loyrater

T=c
/4
Poo

where T is absolute temperature, p is pressure, poo is a reference value for pressure (usually taken to 1000
mbar), Ry is specific gas constant of dry air, ¢, is specific heat capacity on constant pressure, yields the
hydrostatic equation in the scaled pressure form:

or _
0z g

It is convenient to define a large-scale average for both pressure (II) and temperature (©), such that the
left side of Eqn A.1 is in exact balance with the gravity force:

oI1
05" =g (A.2)

The instantaneous value of these variables can be split into large-scale mean value and mesoscale deviation:

9 (A1)

6=0+¢

m=I+7x

I This assumption is referred to as hydrostatic assumption in the text
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32 APPENDIX A. THE MODEL EQUATIONS

Using this notation the hydrostatic equation (Eqn A.1) can be written as:

!
98_H+9,8H @al al:—g
0z 0z 0z 0z
As on the large-scale an exact equilibrium is assumed (Eqn A.2); the first term on the right hand side is
precisely equal to the left hand side. The second term can be written as — g%, which is an expression for
buoyant forces. Neglecting the second order deviation yields a diagnostic expression for the mesoscale
deviation of the scaled pressure:
or'" ¢
FERRAC)
This equation is in the set of the model’s governing equations. The primes (') in the notation of mesoscale
pressure and temperature are dropped in the text for the sake of simplicity.
Note that in the prognostic equation of horizontal motion,the large-scale pressure gradient terms
are expressed with the gradient wind components, using the geostrophic relationship ((ug,v,) =

ﬁ(—g—z, %)),and terms containing the temperature deviation (6) are neglected.

(A.3)

A.2 The governing equations in the terrain following system

Using the chain rule of calculus and the definition of the new vertical coordinate (Eqn 2.6.) the governing
equations (2.1)-(2.5) are written as follows:

5o (D) + (D) + 5 (D§) =0 (A4)
%(Du) + %(Duz) + %(Duv) + %(Dus) — fD(v—v,) =
_®D(% —(s— 1)?90 g)i) + KHDg2‘j +K};Dgiy‘_j - %%(K%}%) (A.5)
%(Dv) + %(Duv) + (%(sz) + %(Dvs') + fD(u —uy) =
—on(5 - (-0 L + kDS + Kk pSE - Lok (46)
% _ %_‘92' (A7)
%(DG) + %(DuG) + (%(Dvﬁ) + %(Dﬁé) =
<520 ks -2 2 ogp) - k4 18P () D0
I 8 Ko og D) - 155, 18P s 1) D 2
T
Here, § = (w — % - u(g;) - v(gz)) gz) and w is vertical velocity in the Cartesian system. Note that

in the diffusion term the effect of the slopping terrain is considered only in the equation for potential

temperature (Eqn A.8)



Appendix B

Finite Difference Scheme

B.1 The Arakawa Scheme

The finite difference analogues of the advection terms in Equation A.5 are written as follows:

0'5[{Fi+%,j7k(ui+%,j7k + Ui jk) — Fif%,m(“i,j,k + Wi—1,j,k)
Gtk (Wijrin + wigr) — Gijo1 x(wijk + vij—1k)
+Fi+%’j+%,k(ui+l,j+l,k + i k) — Fif%’jf%’k(ui,ﬁk +ui1j-1.k)
Gy g Wiy gene + i) = Gipy gy k(Wige + tirnjo10)}

F0.5{S; jrr 1 (Wijktr + Uije — Sijr 1 (Uijk + Uije—1—)}/AzAy

Here
1 * * *
Fivg k= E(FH%JHJc 2y et F )

1 * * * *
Gijrin = 5(Glpin TGy me T Gimgin T Gigjian)

1
_ * * _ * _ *
Fi+%7j+%7k - 12(Gi7%,j7k + Gi+%7j+17k Fi+%,j7k Fi+%7j+17k)

1 * * *
Gi—%,j-‘r%,k = ﬁ(GF%J,k +G>%7]’+17k —F

*
i1k~

L)

For S the following formula is used to satisfy continuity equation:
Sijktt = girtjsrhed Tiodjrrned t St jrhrd 315 1kd

20014 ke +5imgjh+d))

F* and G* are defined in the same gridpoint as potential temperature. § is defined at the same gridpoint
as potential temperature on the projection of iso-s plane, and vertically staggered with 6.

. 1
Fipy g = Uiy i + Digg jJivrjn + (Digg j + Dioy j)uige}

*

itk = g UPirs s+ Digy ji)vip g jagn + (Digg i+ Digg j)uivg jg 0}

A similar method is used for the v component and for 6, but with u replaced by v and 6, respectively.
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34 APPENDIX B. FINITE DIFFERENCE SCHEME

B.2 The Horizontal Diffusion Term

In this section, vertical indices are neglected for the sake of simplicity, as horizontal diffusion terms are
all considered for the same vertical indices. Finite difference scheme for diffusion of u:

2
K (i1, + iz + i + i1 — dugj) /A

the same for v:
2
K (vigr,j + ti1j + i 4 vij-1 — 4vi5) /A

and for 6:
K% {(s —1)[(log D)i41,; + (log D)i—1,j(log D); j+1 + (log D); j—1 — 4(log D); ;]T} j+
0.25(s — 1){[(log D)i+1,; — (log D)i—1,j](Tit1,j — Ti-1,5)+

[(log D) j+1 — (log D) j—1](Tij1 — Tijj—1)}}/A?

where A is horizontal resolution, log D is the natural logarithm of the vertical extension of the model
domain z7 — z¢ and
Tij = (0ijktr — 0ijk-1)/2As

B.3 The Pressure Gradient Term

The vertical grid for 7 and © is staggered, so the scheme for the w pressure gradient term should be
written:

1
ieD{[(niJr%,chf% - Wif%,mfé)/Aﬂ?
1 g
_Z(Sk—% - 1)@(0i+%,j,k—1 01 k1t 0t ik 0y j1)(Digs; —Diy )/ Ax]
(T2 jrrr =it jrrt)/A

1 g
716kt D GE Oy gy T 0t F it + 04 0)(Digyy — Dioy )/ Aal}



Appendix C

Tables for the Landuse Land Cover
Parameterizations
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APPENDIX C. TABLES FOR THE LANDUSE LAND COVER PARAMETERIZATIONS

Present Category Original Land Cover Original Landuse
1. Evergreen Needleleaf 3. Evergreen Conifers 5. Forest

2. Evergreen Broadleaf 6. Evergreen Broadleaf 5. Forest

3. Deciduous Needleleaf 4. Deciduous Conifers 5. Forest

4. Deciduous Broadleaf 5. Deciduous Broadleaf 5. Forest

5. Mixed Forest 7. Forest 5. Forest

6. Closed Shrublands 2. Evergreen Broadleaf Shrubs 3. Orchards

7. Open Shrublands 2. Evergreen Broadleaf Shrubs 3. Trees

8. Woody Savannas 7. Forest 5. Forest

11. Permament Wetland 11. Rice 1. Rice Field

12. Croplands 10. Arable Cropland 2. Arable Cropland
13. Urban 12. Urban 7. Buildings

14. Natural Vegetation Mozaic 10. Arable Cropland 2. Arable Cropland
17. Water Bodies 13. Water 11. Lakes

Table C.1: Concordance Table of the present landuse and land cover categories to the original
classification

Cathegory o} 20 K, | C
9. Savannas 0.2 | 0.1* |06 |20
10. Grassland 0.2* | 0.3* [ 05120

107%% | 1.0 | 1.3
1073 | 14|68

15. Snow and Ice 0.4
16. Barren and Sparsely Vegetated | 0.25

Table C.2: External parameters for the new categories
*Taken from Stull (1988)

1. albedo («, non-dimensional)
2. roughness length (2 [m])

3. thermal diffusivity (K, = v/o, [m?s™'], where v is thermal conductivity [Jkg='K~!] and g, is
density of the soil [kgm™3])

4. volmetric heat capacity (C = c¢y0, [Jm™3K~!], where ¢, [Jkg~'K '] is specific heat capacity of
the soil)



