GLOBAL CLIMATE MODELLS AND REGIONAL CLIMATE PROJECTIONS FOR THE 21ST CENTURY

Judit Bartholy

Department of Meteorology, Eötvös Loránd University, Budapest

OUTLINE

- I. Global climate modelling
- **II.** Historical aspects
- **III. Regional climate modelling**
- IV. Joint EU projects on regional climate modelling (PRUDENCE, ENSEMBLES, CECILIA, CORDEX)
- **V. IPCC** 2007
- **VI. SREX -2012**
- VII. Progress and findings of IPCC 2013-2014
- **VIII.** Perspectives for the Polar region
- **IX.** Perspectives for Central Europe

Questions

What are the implications of global warming for a **smaller region** like Europe, Carpathian-basin or Estonia?

How will the sea, the mountains alter the story?

Do global models tell us the full story or we need **extra tools**?

Regional Climate Prediction

- Aim: To understand the impact of global warming.
- General circulation models (GCMs): provide a general view of the global evolution of the atmosphere.
- GCMs are essentially the same as global weather prediction models but are run with much coarser resolution and allow the composition of the atmosphere to vary in time (e.g., more CO2)
- Even leading GCMs only describe features of roughly 200-450 km in scale.

• European weather is dominated by the midlattitude ciclons and land-water contrasts of smaller scale.

• In order to understand the implications of global changes on our weather, downscaling of the GCM predictions is required.

Statistical downscaling

Dinamical downscaling

- The traditional approach to use GCM output is through <u>statistical</u> <u>downscaling</u>, which finds the statistical relationship between largescale atmospheric structures and local weather.
- Statistical downscaling either assumes current relationships will hold or makes simplifying assumptions on how local weather works.

Such statistical approaches may be a reasonable start, but may give deceptive or even wrong answers... since the relationships between the large scale atmospheric flow and local weather might change in the future.

- There is only one way to do this right... running full weather forecasting models at high resolution over extended periods, with the large scale conditions being provided by the GCMs....this is called dynamical downscaling (nested modelling).
- Such weather prediction models have very complete physics and high resolution, so we can expect realistic results

Downscaling

 Computer power and modeling approaches are now powerful enough to make dynamical downscaling realistic.

EU projects

PROJECT

MOTIVATION

- Uncertainity of the clima projections
- Differences, variability of the model runs
- Extrems simulations, case studies (precipitation, temperature)
- Coordinated dynamical downscaling (modell simulations, comparison)

PROJECT

AIMS - CONTENT

- Modeling 45% (simulations, comparison)
- Effect studies 45% (hydrology, agriculture, forestry, ecosystems)
- Climatepolicy, dissemination 10% (publications: media, policy makers, economy)

	List of RCMs with their driving GCMs used in the composite analysis				
	Institute	RCM	Driving GCM	Scenario	
1	Danish Meteorological Institute	HIRHAM	HadAM3H	A2, B2	
2		HIRHAM	ECHAM5	A2	
3		HIRHAM high res.	HadAM3H	A2	
4		HIRHAM extra high res.	HadAM3H	A2	
5	Hadley Centre, UK Met Office	HadRM3P (ensemble/1)	HadAM3P	A2, B2	
6		HadRM3P (ensemble/2)	HadAM3P	A 2	
7	ETH (Zürich)	CHRM	HadAM3H	A2	
8	GKSS	CLM	HadAM3H	A2	
9		CLM improved	HadAM3H	A 2	
10	Max Planck Institute	REMO	HadAM3H	A 2	
11	Swedish Meteorol. and Hydr. Inst.	RCAO	HadAM3H	A2, B2	
12		RCAO	ECHAM4/OPYC	B2	
13	UCM (Universidad Complutense Madrid)	PROMES	HadAM3H	A2, B2	
14	Int. Centre for Theoretical Physics	RegCM	HadAM3H	A2, B2	
15	Norwegian Meteorological Institute	HIRHAM	HadAM3H	A 2	
16	KNMI (Netherlands)	RACMO	HadAM3H	A2	
17	Météo-France	ARPEGE	HadCM3	A2, B2	
18		ARPEGE	ARPEGE/OPA	B2	

Climate scenarios for Europe based on PRUDENCE project

- EU-project: 2001-2005
- 19 regional climate model outputs for Europe
- Spatial resolution: 50×50 km²
- Climate projections only for 2071-2100 (SRES A2 and B2) Reference period: 1961-1990
- Using three OA-GCM-pair for the boundary conditions of the regional models: HadAM3H/HadCM3 (UK), ECHAM4/OPYC3 (DE), ARPEGE/OPA (FR)

Temperature change (19 model-runs) SUMMER (JJA) – PRUDENCE 2071-2100 SRES A2 scenario

Climate scenarios for Europe based on PRUDENCE project

- EU-project: 2001-2005
- 19 regional climate model outputs for Europe
- Spatial resolution: 50×50 km²
- Climate projections only for 2071-2100 (SRES A2 and B2) Reference period: 1961-1990
- Using three GCM-pair for the boundary conditions of the regional models: HadAM3H/HadCM3 (UK), ECHAM4/OPYC3 (DE), ARPEGE/OPA (FR)

Temperature bias (19 model-runs) SUMMER (JJA) – PRUDENCE 1961-1990 Bias from CRU-data

Expected precipitation changes for 2071-2100 A2 scenario, PRUDENCE (19 model runs)

SUMMER (JJA)

WINTER (DJF)

ENSEMBLES

What new long-term climate information does ENSEMBLES offer?

- A new daily interpolated observational dataset for surface climate over Europe (E-OBS)
- GCM projections assuming A1B and E1 emissions scenarios
- RCM projections (nested in GCMs) for A1B
- RCM-based PDFs (bivariate distributions; A1B emissions)

Observed changes in the 1961-2006 period station trends in winter precipitation RR : Precipitation sum 0 Trends 1961-2007 DJF nn/decade > 240 **()** 160 - 240 🔿 80 - 160 0 - 80 o pos. but n.s. at 5% o n.s. at 25% o neg. but n.s. at 5% 0 - - 80 ○ -80 - -160 Change in winter precipitation 1961-2006 ECA&D, 02-09-2008 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 km mm/10yr **Estonia** < -40 -40 - -30 -30 - -20 Hungary -20 - -10 -10 - 0 0 - 10 10 - 20 20 - 30 30 - 40 > 40

RCM and GCM projections

for the Northern and Southern part of Europe

Source: John Caesar (Met Office)

RCM-based joint PDFs

Source: Stefan Fronzek (SYKE), Philip Lorenz (MPI)

ENSEMBLES multiple projections intercomparison

Projections of mean and extreme climatological conditions for Central/Eastern Europe

Department of Meteorology Eötvös Loránd University Budapest, Hungary

Integration domain of the RCM experiments

Larger domain, 25 km spatial resolution: PRECIS

Smaller domain, 10 km spatial resolution: RegCM

RCM adaptations at the Dept. of Meteorology Eötvös Loránd University

RCM	PRECIS	RegCM/RegCM β
Developper	UKMO Hadley Centre	ICTP, Trieste IT
Start of adaptation	Autumn 2002	Autumn 2005
Horizontal resolution	25 km	10 km
Applied coordinates	Rotated spherical system	Lambert projection
Vertical levels	19 hybrid atmospheric + 4 soil layers	18 sigma atmospheric + 3 soil layers
Spin-up time	2 years	1 years
Integrations time intervals	5 min	1.5 min
Completed and planned experiments	CTL: 1961-1990 ERA40 CTL: 1961-1990 HadCM3 A2: 2071-2100 HadCM3 B2: 2071-2100 HadCM3 CTL+ A1B: 1951-2100 HadCM3	CTL: 1961-2000 ERA40 CTL: 1961-2000 ECHAM5 A1B: 2021-2050 ECHAM5 A1B: 2071-2100 ECHAM5 CTL/RegCM4 * (50 km): 1981-2010 ERA-Interim Planned (CORDEX): CTL+RCP4.5 RegCM4 * (50 km): 1950-2100 CTL+RCP8 5 RegCM4 * (50 km): 1950-2100

Results:

Climate change projections for the 21st century for the Carpathian basin

Analysis of different scenarios using PRECIS simulations

Simulated seasonal temperature change by 2071–2100 (reference period: 1961–1990)

Projected change: increasing temperature (especially in summer)

Pieczka et al., 2011

Temperature-related climate indices for projecting extreme conditions

Pieczka et al., 2015

Spatial mean and duration of heat wave warning levels (Carpathian basin: 229 grid cells)

By the end of the 21st century

-- the occurrences of heat wave warning level cases are projected to change by ~10 times,

-- the mean duration of heat wave warning levels are projected to double

Simulated seasonal precipitation change by 2071–2100 (reference period: 1961–1990)

Projected change: summer decrease, winter increase

Pieczka et al., 2015

Annual distribution of monthly mean precipitation

(mm/month)

Projected change: summer decrease, winter increase

Pieczka et al., 2015

Results:

Climate change projections for the 21st century for the Carpathian basin

Analysis of different models using

ENSEMBLES simulation outputs

Projected seasonal temperature change, A1B scenario Reference period: 1961-1990

- Estimated warming by 2021-2050: 1-3 °C, by 2071-2100: 2-6 °C
- The largest seasonal warming is projected for summer
- The largest warming is projected by the HadCM-driven RCM simulations

Pongrácz et al., 2011, Datasource: ENSEMBLES, 2009

Estimated seasonal temperature change: using 11 model simulation results for A1B scenario (Reference period: 1961-1990)

Pongrácz et al., 2015, Datasource: ENSEMBLES, 2014

 2021-2050: the projected changes don't exceed 15-20%, and mostly not significant
2071-2100: precipitation decrease is projected for summer (by 10-40%) precipitation increase is projected for winter (by 5-30%)

Estimated seasonal precipitation change: using 11 model simulation results for A1B scenario (Reference period: 1961-1990)

-The largest precipitation decrease / increase is projected for summer / winter (~30% / ~20%)

Projected temperature and precipitation change for Hungary Reference period: 1961-1990 •

CONCLUSIONS

WHAT DO THE RCM-SIMULATIONS PROJECT FOR THE CARPATHIAN BASIN?

• TEMPERATURE

Warming is projected to continue: The largest warming is estimated for summer More frequent, more intense warm extremes Less cold extremes

⇒ PRECIPITATION

Drier summers and wetter winters are projected Longer and more frequent drought events in summer