Eötvös Loránd Tudományegyetem Földrajz- és Földtudományi Intézet Meteorológiai Tanszék

Természetes eredetű por terjedésének modellezése a WRF-Chem modellel

DIPLOMAMUNKA

Készítette:

Kovács Attila Meteorológus mesterszak, Éghajlatkutató szakirány

Témavezető:

Mészáros Róbert¹, Leelőssy Ádám¹, Lagzi István²

1: Eötvös Loránd Tudományegyetem, Meteorológiai Tanszék

2: Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizika Intézet

Budapest, 2015

Tartalomjegyzék

1. Bevezetés	
2. A levegőminőség modellezése	4
2.1. A légköri kémiai transzport modellek	4
2.2. Légköri folyamatok modellezése	5
2.3. A kémia alkalmazása a levegőkémiai transzport modellekben	7
2.4. Légszennyezők folyamatainak vizsgálata a kémiai modellekben	9
2.4.1. Meteorológia-függő emissziók	9
2.4.2. Folyadék fázisú kémia	10
2.4.3. Az aeroszol részecskék	10
2.4.4. Ülepedési folyamatok	12
2.5. Modell-eredmények kiértékelése és verifikációja	13
3. A WRF és a WRF-Chem modellek	14
3.1. A WRF modell	14
3.2. A WRF-Chem modell	17
3.3. A modell alkalmazásai	19
4. A WRF-Chem modell adaptálása	
5. Eredmények	
5.1. Nagytérségű koncentráció mezők vizsgálata	
5.2. Sivatagi por terjedésének vizsgálata	
5.3. Érzékenységvizsgálat a mikrofizika változtatásával	
6. Összefoglalás	
Irodalomjegyzék	

1. Bevezetés

Kutatásaink célja légköri szennyezőanyagok terjedésének és térbeli eloszlásának modellezése városi környezetben a WRF-ARW modell (*The Weather Research & Forecasting Model - Advanced Research WRF*, v3.6, 2014.) és annak levegőkémiai kiegészítése (*WRF-Chemistry*, v3.6, 2014.) segítségével. Az integrált modell-rendszerrel a légkörben lévő nyomgázok és aeroszolok emissziós, transzport, keveredési és kémiai átalakulási folyamatai szimulálhatók. Megfelelő verifikációval a WRF-Chem modell pontos emissziós adatok ismeretében képes operatív és valós idejű levegőminőség előrejelzések készítésére is. A modell által készített időjárás-előrejelzések a levegőkémiai folyamatok figyelembevételével pedig adott meteorológiai helyzetekben akár pontosabbá is válhatnak, mint azok nélkül.

A WRF modell az egyik legelterjedtebb időjárás előrejelző modell a világon, köszönhetően annak, hogy nyílt forráskódú és hogy hibajavítását, fejlesztését a szakemberek és felhasználók közössége folyamatosan végzi. A WRF-Chem-et levegőminőség-, vulkanikus hamu szétszóródás-, és időjárás-előrejelzések készítésére, illetve kutatási célokra használják. A WRF-Chem modell sokoldalúsága miatt nagy felhasználó és fejlesztő közösségre tett szert, melynek köszönhetően folyamatosan fejlesztik, és látják el új beállítási lehetőségekkel.

A légszennyezők, többek között a nitrogén-dioxid, a kén-dioxid, az ózon, és az aeroszol részecskék (PM₁₀) negatív élettani hatásaik miatt fontos szerephez jutnak bizonyos időjárási helyzetekben, főleg szélcsend idején, ezért egészségügyi okokból is érdemes és fontos az időjárás-előrejelző és levegőkémiai, terjedési modelleket együttesen alkalmazni, illetve a kapott eredményeket verifikálni, továbbá a modell-beállításokat finomítani, pontosítani.

Diplomamunkám keretében a WRF-Chem modell adaptálását végeztem el. Ennek során a modellt alkalmassá tettem egy adott számítástechnikai környezetben, a rendelkezésre álló meteorológiai és emissziós mezők ismeretében a levegőkémiai szimulációk elvégzésére. Első lépésként a külső szimulációs tartományokat (Közép-Európa, Kárpát-medence) határfeltételként használva a Budapest térségét reprezentáló modell-beágyazásban a porkoncentráció mezőket vizsgáltam nagymennyiségű, természetes forrásból származó szaharai por átvonulása esetén. Összevetettem a modell által szimulált porkoncentráció értékeket a légszennyezettségi mérőállomások adataival. Végül érzékenységvizsgálatot hajtottam végre a hőmérsékletre a mikrofizikai séma változtatásával.

3

2. A levegőminőség modellezése

2.1. A légköri kémiai transzport modellek

A légköri kémiai/levegőminőség valamint az éghajlat/időjárás (meteorológiai) modelleket az 1970-es évek közepéig még külön-külön fejlesztették. A háromdimenziós légköri kémiai transzport modellek (*Atmospheric Chemical Transport Models*, ACTM-ek) addig főként mért/analizált meteorológiai mezőkön, vagy 1–6 órás időfelbontású, mezoskálájú regionális meteorológiai modellek kimeneti fájljain, esetleg egy sokkal durvább (6, vagy több óra) időfelbontású általános cirkulációs modell (*General Circulation Model*, GCM) kimeneti fájljain alapultak (amire offline csatolásként szoktak hivatkozni). A nagymértékű adatcsere mellett ez az offline szétválasztás nem engedi a levegőminőség és a klíma/időjárás közötti visszacsatolások szimulációját. Ez a meteorológiai és levegőminőség modellek közötti hiányos, vagy inkonzisztens csatolást, valamint lényeges folyamat-információk (például felhőképződés és csapadék) elvesztését eredményezheti, amelyek a klíma/időjárás modellekénél kisebb időskálákon zajlanak le. Ezzel szemben az ilyen visszacsatolások a teljesen integrált, online modellekben már megvalósíthatók, a meteorológiai mezők tér- és időbeli interpolációja nélkül, de általánosan nagyobb számításigény mellett (*Zhang*, 2011).

Az ACTM-ek sikeres eszközök a szennyezőanyag-koncentrációk becslésében és szimulációjában lokális, regionális és globális skálán egyaránt. Az elmúlt évtizedekben lényeges fejlesztések történtek az ilyen modellek terén, melyek elsődleges célja az volt, hogy a kutatók, a döntéshozók és a lakosság számára megbízhatóbb adatokat szolgáltassanak a levegőminőségről. Az ACTM-ek így hasznos kellékei az emisszió ellenőrzési tervezetek, a levegőminőség szabályozások és előrejelzések tesztelésének és kivitelezésének.

Az ACTM-ek felfoghatók fizikai és kémiai légköri folyamatok matematikai reprezentációjaként, amiket numerikus módszerekkel oldunk meg a szennyezőanyagemissziókat és meteorológiai feltételek felhasználva, hogy megkapjuk a légszennyezők koncentrációit, mint egy tér és idő változókkal rendelkező függvényt. A modellezés megközelítésétől függően különböző ACTM-típusok léteznek, elsősorban Lagrange-i és euleri modellek (*Jacobson*, 2005).

4

Az elmúlt évtizedekben számos levegőkémiai modellt fejlesztettek ki világszerte, ezek közül a fontosabbak:

- BOLCHEM (Olaszország) (Maurizi et al., 2008),
- COSMO-ART (Németország) (Vogel et al., 2009),
- COSMO-LM-MUSCAT (Németország) (Schrödner et al., 2014),
- ENVIRO-HIRLAM (Dánia) (Baklanov et al., 2008),
- GEM-AQ (Kanada és Lengyelország) (Kaminski et al., 2008),
- IFS-MOZART, C-IFS (Egyesült Államok) (Flemming et al., 2012),
- NMMB/BSC-CTM (Spanyolország) (Badia & Jorba, 2014),
- MCCM (Németország) (Forkel & Knoche, 2006),
- MEMO/MARS-aero (Görögország) (Moussiopoulos et al., 2012),
- Meso-NH (Franciaország) (Tulet et al., 2005),
- MetUM (Egyesült Királyság) (Telford et al., 2012),
- M-SYS (Németország) (Schatzmann et al., 2006),
- RegCM4-Chem (Olaszország) (Shalaby et al., 2012),
- RAMS/ICLAMS (Egyesült Államok / Görögország) (Kushta et al., 2013),
- WRF-Chem (Egyesült Államok) (Chapman et al., 2009),
- WRF-CMAQ Coupled System (Egyesült Államok) (Wong et al., 2012).

2.2. Légköri folyamatok modellezése

Az utóbbi évekig a tudományos elméletek komplexitása, valamint a számítógépes kapacitás hiánya miatt a levegőkémiai és az időjárás-előrejelző modellezés egymástól elkülönülve fejlődött. Az így kifejlesztett modellrendszerek ezért csak lazán csatoltak. Az elmúlt évtized nagymértékű számítási kapacitás növekedése lehetővé tette az online regionális meteorológiai modelleknek a légköri kémiai transzport modellekkel való csatolását. A COST (*European Cooperation in Science and Technology, Action ES1004 (2011-2015) – European framework for online integrated air quality and meteorology modeling*) az újgenerációs integrált online ACTM modelleket helyezi előtérbe, melyek kétirányú kölcsönhatásokat tartalmaznak különböző légköri folyamatok között, mint például a kémia, a felhők, a sugárzás, a határréteg, az emisszió, az időjárás és az éghajlat. Ezek a folyamatok és visszacsatolási mechanizmusok

számos kutatási és felhasználási terület szempontjából fontosak, beleértve a három fő légköri modellezést végző közösséget: a numerikus időjárás-előrejelzést (*Numerical Weather Prediction*, NWP), a levegőminőség- és levegőkémiai időjárás-előrejelzést (*Air Quality/Chemical Weather Forecasting*, AQ/CWF), valamint a klíma/Föld-rendszer modellezést végzőket (*Grell & Baklanov*, 2011).

Számos, a légkörben lejátszódó fizikai folyamatnak kisebb a térbeli vagy időbeli skálája, mint egy adott modell felbontása. Ezen folyamatok közelítő leírásához empirikus módszereket használnak, amelyek prognosztikai változókkal hozzák összefüggésbe őket. Az ilyen "fizikai" parametrizációk hibaforrásokat jelentenek a modellekben, de ugyanakkor a modellek teljesítmény-fejlesztésének alapját is képezik. A modellek egyéb hibaforrásait külön vizsgálják.

A felhők és a sugárzás fontos szereppel bír a mezoskálájú időjárás előrejelzésben. A felhők mennyiségének, emelkedésének és típusának előrejelzése elengedhetetlen a repülés számára, míg a direkt sugárzás ismerete a megújuló energiatermeléshez szükséges. A numerikus időjárás-előrejelző modellekben a pontos hőmérséklet-, és csapadék-előrejelzéséhez a felhők valamint a sugárzás létének és tulajdonságainak előrejelzése mellett fejlődésük megfelelő figyelembe vétele is nélkülözhetetlen (*Liang et al.* 2006).

A planetáris határréteg (PHR) a légkör azon levegőrétege, amely a földfelszínhez közel, annak tér- és időbeli tulajdonság-változásaira reagál, és amely létrehoz egy határfelületet a felszín és a (tropopauzáig terjedő) szabad légkör között. A PHR vastagsága nagy változékonyságot mutat időben és térben, értéke párszáz métertől néhány kilométerig változik. Vastagságát a klasszikus folyadékdinamikára alapozva a felszíntől addig a magasságig tekintjük, ahol a szélsebesség eléri a szabad légköri áramlás sebességének 99%-át.

A PHR meteorológiai és kémiai transzport folyamatok témakörében való tárgyalása több okból is fontos, főként, ha képesek vagyunk modellezésére. Mivel a határrétegben élünk, közvetlen hatással vannak ránk annak karakterisztikái és dinamikája, ahogy az emberi tevékenység is képes ezek megváltoztatására. A határréteg fontos szerepet játszik a hő-, a nedvesség-, a momentum-, a nyomgázok-, és az aeroszol részecskék kicserélődésében is. Sok nyomgáz forrásának és nyelőjének helye, beleértve a vízgőzt, a szén-dioxidot, az ózont, a metánt, a makrorészecskéket stb.

6

A PHR meghatározó tulajdonsága a turbulens jelleg. A felszín és a légkör közötti tömegtranszportban a turbulencia több nagyságrenddel hatékonyabb tényező, mint a molekuláris diffúzió. A turbulencia segítségével képes a PHR reagálni a felszíni kényszerek változásaira, mint például a súrlódás, az evaporáció és transzpiráció, a hőszállítás, a szennyezőanyagok emissziója, és a felszín keltette változások). Ennek hatására, a légkör kinetikus energiájának körülbelül ötven százaléka disszipálódik a PHR-ben. A PHR megértése feltétlenül szükséges a numerikus meteorológiai és transzport modellezés szempontjából, a mikro-skálától a globális skáláig (*Stull,* 1988).

A határfeltételek, különösen az alsó határfeltételek specifikációja is hibaforrást jelent, kifejezetten akkor, ha ezek horizontális felbontása sokkal kisebb, mint a modellé.

Az NWP modellek fejlesztésének egyik módja, ha több numerikus előrejelzés összességét vizsgáljuk, melyek mind különböző – de realisztikus – kezdeti feltételből indultak. Ezt a megközelítést "ensemble" előrejelzésnek nevezik. Az ensemble elemei különböző szimulációkból készülhetnek más-más parametrizációval, modellverzióval vagy modellel (*Houtekamer et al.*, 1996).

2.3. A kémia alkalmazása a levegőkémiai transzport modellekben

A hagyományos időjárás-előrejelző és klíma-modellek a sebesség, a belső energia, a turbulens kinetikus energia és a tömeg leírására alkalmas prognosztikai differenciálegyenletekre épülnek. A tömegváltozások tipikusan a száraz levegőre, a vízgőzre, illetve a folyékony-, és jég-felhő-vízre felírt néhány kontinuitási egyenletből nyerhetők. A prognosztikai változókat kémiai nyomelemekkel, például aeroszol részecskékkel és megfelelő kémiai reakciókkal egészítették ki a napjainkban fejlesztett, integrált kémiával rendelkező NWP modellekben. Az online kémia fejlesztésének fő okai: a) az aeroszol részecskék, mint felhő kondenzációs magok (*Cloud Condensation Nuclei*, CCN) továbbfejlesztett leírása elősegítheti az időjárás előrejelzését bizonyos időjárási helyzetekben, b) az online integrált kémia javíthatja a levegőkémiai időjárás-előrejelzéseket, és c) a távérzékelő műholdakon keresztül mérhető kiegészítő prognosztikai változók felhasználhatók modern adat-asszimilációs inverz

módszerek segítségével a kezdeti dinamikai állapot megadásának finomítására. Az online integrált kémia szükséges az aeroszol részecskék direkt és indirekt hatásaiból származó sugárzási kényszer kielégítő számítására a klíma-típusú felhasználások számára is.

Az NWP és klíma modellekben az egyedi kémiai módosulatokat jellemző számos, néha több száz prognosztikai változó nehéz feladatot jelent a számítási módszerek tekintetében még a modern nagyteljesítményű számítógépes rendszereken is (*Korsholm et al.*, 2008).

A légkörben található kémiai elemekre hatást fejtenek ki a terjedési, az emissziós, az ülepedési és a kémiai folyamatok. Matematikailag megfogalmazva, egy ACTM-ben a kémiai elemekben történő változások sebességét egy sor parciális differenciálegyenlet írja le térben és időben. A numerikus modellek ezen egyenletek külön-külön vett tagjait minden modellidőlépcsőre (lépésre) sorrendben oldják meg. Ennek köszönhetően a kémiát egy külön csatolt differenciálegyenlet-rendszerként kezelhetjük, amely minden egyes elem tendenciáját csatolja a többi elem koncentrációjához ugyanabban a rács-cellában, függetlenül a többi rács-cellában vett koncentrációtól.

A csatolt differenciálegyenlet-rendszer megoldása nem triviális, mivel a rendszer "merev", azaz a kémiai reakcióráták nagyságrendje tág határok között mozog, néhány reakciónál milliszekundumos, míg bizonyos reakcióknál napos, vagy akár éves időskálájú is lehet. Ezért speciális numerikus megoldó-programokat fejlesztettek ki az olyan rendszerek számára, amelyek képesek a numerikus pontosság és a számítási teljesítmény optimalizálására.

Egy másik feladat az ACTM-ekkel kapcsolatban a szerves kémiai reakciók számának lecsökkentése, ami nélkül a teljes leíráshoz több ezer vegyületet és több tízezer reakciót kellene számításba venni, ami nem lehetséges egy ACTM-ben. Számos megközelítést fejlesztettek ki a csökkentett (redukált) kémiai mechanizmusok létrehozására, például a helyettesítő molekula mechanizmusokat vagy a szén-kötési mechanizmusokat (*Carbon Bond Mechanisms*, CBM-ek).

A fotolízis reakciók a légköri fotokémiai reakciók lényeges osztályát képezik, hozzájárulva például a nagymértékben reaktív gyökök keletkezéséhez. A fotolízis (reakció)ráták hatékony számítása egy újabb probléma az ACTM-ekben, mivel a felhők, aeroszol részecskék, sztratoszférikus ózon, felszíni reflektancia stb. hatását pontosan kell leírniuk (*Baklanov et al.,* 2014).

A levegőminőség-előrejelzések készítésének fejlesztésére a kémiai reakciók leírásának korszerűsítése mellett a kémiai adatasszimilációt használják, amely a légszennyezők szimuláció kezdetén vett eloszlásának (kezdeti feltételek) javítását jelenti. Az adatasszimiláció célja, hogy a megfigyelési, és a modell-adatokat egyesítve megadja a szükséges változók legvalószínűbb állapotát. A kémiai adatasszimiláció esetében ezek az állapothatározók lehetnek a nyomgázok és aeroszol részecskék légköri eloszlásai, az emissziók eloszlása és erőssége, regionális modell esetén a koncentrációértékek a modell határain, vagy egyéb modellparaméterek.

Ugyanakkor eltérően az időjárás-előrejelzésektől, a kémiai modellekben a kezdeti állapot hatása egyre csökken, hiszen számos légszennyező rövid tartózkodási idejű. A levegőminőség-előrejelzéseket erősebben irányítják a kényszerek, mint például az emisszió, és a regionális modellek esetén a határfeltételek. Ezért sokkal ígéretesebb megközelítés a kémiai adatasszimilációban, ha inkább a kényszereket tudjuk beállítani, mint a pontos kezdeti koncentrációkat. Az inverz emisszió becslése nem csak a modell előrejelzések fejlesztése szempontjából fontos, de nagyon elterjedté vált a kiértékelés és a "bottom-up" emisszióbecslés fejlesztése miatt is. A reaktív nyomgázok esetében azonban az inverz emisszióbecslés különösen nehéz, a kémiai rendszer jelentős nem-linearitásai miatt (*Barbu et al.,* 2009).

2.4. Légszennyezők folyamatainak vizsgálata a kémiai modellekben

2.4.1. Meteorológia-függő emissziók

A légszennyező anyagok koncentráció mezői sok tényezőtől függnek, ezek közül az egyik legfontosabb az emisszió, ami kémia nélküli esetben lineárisan befolyásolja a koncentrációértékeket. A légkörbe irányuló emissziók számos forrással rendelkeznek, és különböző forrás kategóriákhoz tartoznak. Ezek a természetes emissziók (pl. a talajból, vadtüzekből, növényekből), illetve az antropogén emissziók (pl. a közlekedésből, iparból, mezőgazdaságból).

Az emissziók meteorológia-függése több skálán tárgyalható, a klíma-hatásoktól az éves ciklusokon át a napi menetekig. Az időfüggés nem általános, hanem eltérő a természetes, biogén és antropogén emissziókra, illetve a különböző területekre. Továbbá ez az időfüggés

nem azonos az egész Földre, hanem országonként, területenként változhat. Az idő szerepe azért is fontos, mivel a nappal és éjjel vett légköri határréteg magasságoknak a különbsége nemcsak az eredményként kapott koncentrációkban, de a koncentráció értékek hiteles számításához szükséges emissziós adat-pontosságban is előidézhet változást (*Schlünzen & Krell*, 1994).

2.4.2. Folyadék fázisú kémia

A felhők a Föld felszínének megközelítőleg 60%-át borítják, és központi szerepet játszanak nemcsak a napi időjárás és a klíma alakulásában, de a légköri kémiában is. A felhők fontos helyszínei a légköri nyomgázok és aeroszol részecskék kémiai folyamatainak, és a hozzájuk köthető csapadék a légköri összetevők jelentős nyelője. A felhő folyékony fázisa számos kémiai reakciót segít elő, például a kén és a szerves vegyületek oxidációját, amelyek vagy túl lassan, vagy egyáltalán nem játszódnak le a gáz-fázisban. A felhőknek csak csekély hányadából hullik ki csapadék, ezen felül az esetek többségében a gázokat és az aeroszol részecskéket nem vonja ki a légkörből, csak "feldolgozza" őket a felhő, és azok más kémiai formákban szabadulnak fel az evaporációval (párolgással). A jelenlegi tudományos álláspont szerint az aeroszol részecskék háromciklusnyi felhő-kondenzáción és evaporáción mennek keresztül, mielőtt kikerülnének a felhőkből, jelezve ezzel a felhő-folyamatok kulcsszerepét (*Baklanov et al.*, 2014).

2.4.3. Az aeroszol részecskék

A légköri aeroszol részecskék fontos szerepet játszanak a környezettudományok számos területén, beleérve az emberi egészségre való hatásaikat, a légköri látástávolság csökkentését, a savas ülepedést, és a Föld sugárzásegyenlegét. A légköri aeroszol részecskék méret-, és összetétel-eloszlásának modellezése lényeges az emberi tevékenységből származó, levegőminőségre és klímaváltozásra vonatkozó hatások becslése szempontjából (*Zhang et al.,* 2007).

Az aeroszol részecskék vizsgálatának főbb feladatai:

- A részecskék, főbb kémiai alkotórészek osztályozása, valamint forrásaik, kémiai tulajdonságaik és az egyes aeroszol részecskék dinamikája és tulajdonságaik elemzése.
- A légköri modellekben használt aeroszol részecskék méret-eloszlásának parametrizációi, és ezek matematikai megfogalmazásai.
- Aeroszol részecske-felhő kölcsönhatási folyamatok leírása, mint például a felhőn belüli és a felhő alatti szétszóródás, az aeroszol részecske aktiváció, mint felhőképzőmagok (*Cloud Condensation Nuclei*, CCN) és jég-magok (*Ice Nuclei*, IC), valamint ezek fontosabb kémiai és fizikai tulajdonságainak jellemzése.

Az offline modellekben csak klimatológiai alapú aeroszol-eloszlásokat használnak, ezzel szemben az online integrált modellekben az aeroszol részecskék dinamikájának leírására is szükség van. Az aeroszol részecskék eltérőek lehetnek morfológiájuk, méretük és kémiai összetételük tekintetében. Hatással vannak a légköri sugárzásra és felhő-mikrofizikára, és kölcsönhatnak a gáz-fázisú komponensekkel. Ezek a kölcsönhatások függnek a mérettől, és a kémiai összetételtől. E tekintetben a víz egy fontos elem az aeroszol részecskék szempontjából, mivel a víztartalom befolyásolja a kémiai összetételt is, illetve a kémiai összetétel a víztartalmat. Számos folyamat megváltoztatja az aeroszol részecskék fizikai és kémiai tulajdonságait, amely változásokat figyelembe kell vennie a modellekben. Ezek közé tartozik a nukleáció, a koaguláció, a kondenzáció, valamint az evaporáció, szedimentáció (ülepedés), a felhőn belüli és felhő alatti kimosódás, illetve a felszíni ülepedés (*Baklanov et al.,* 2014).

Az aeroszol részecskék jelenléte kedvező feltételt jelent a felhőképződés számára, illetve az aeroszol részecskék befolyásolják a felhők mikrofizikai és fizikai tulajdonságait, valamint a csapadék kihullását. Ezért minden online modell tartalmaz felhő-sémákat, amelyek explicit vagy implicit módon leírják az aeroszol részecskék hatását a felhőkre. Ha az aeroszol részecskék száma és tömeg-koncentrációja nincs csatolva a felhő-sémához, a felhőelemek számát értelemszerűen kell becsülnünk a mikrofizikai parametrizációkban.

Az elsődleges indirekt aeroszol részecske hatások: a felhőcseppek méretének, számának, reflektanciájának és optikai mélységének befolyásolása a felhő-kondenzációs magvakon (CCN) keresztül; a másodlagos indirekt aeroszol részecske hatások: felhőben található folyékony víztartalom, felhő élettartam és csapadék befolyásolása (*Jacobson*, 2005).

Az aeroszol részecskék sugárzási kényszerének számszerűsítéséhez hullámhossz-függő optikai tulajdonságaikat kell meghatároznunk. Ezek az aeroszol részecskék optikai mélysége *(Aerosol Optical Depth*, AOD), az egyszeres szórási albedó (*Single Scattering Albedo*, SSA), és az aszimmetria faktor (g). A belső optikai tulajdonságok közül a sugárzási tulajdonságok: az áteresztő-képesség, a reflektancia, és az abszorbancia számítható a sugárzási-átviteli algoritmusokkal (*Thomas & Stamnes*, 2002).

Az aeroszol részecskék egyik legfontosabb típusa a szálló por (*Particulate Matter*, PM). A szálló por egy általános elnevezés, amely a légszennyezők egy olyan típusát jelöli, amelyek komplex és változó keverékű részecskéket tartalmaznak a levegőben. Ezek a részecskék méretben és összetételben különbözhetnek, illetve számos természetes és antropogén forrásból származhatnak. A főbb források a gyárak, az erőművek, a hulladékégetők, a járművek, az építkezések, a tüzek, és a természetes szél fújta por. A részecskék mérete változatos, megkülönböztetünk PM_{2,5} és PM₁₀ szálló port, amelyek rendre a 2,5 μm-nél és a 10 μm-nél kisebb átmérőjű részecskéket jelölik. A részecskék méretüktől függően különböző mélységekben képesek behatolni a tüdőbe: a PM₁₀ durvább részecskéi a felső légúti szövetekig, míg a finomabb por részecskéi akár a léghólyagocskákig is, így az utóbbiak veszélyesebbnek tekinthetők. A szálló por részecskék főként fémeket, szerves vegyületeket, biológiai eredetű anyagokat, ionokat, reaktív gázokat és szénből álló magokat tartalmaznak (*Kampa & Castanas*, 2008).

2.4.4. Ülepedési folyamatok

Az ülepedés az a folyamat, amely során a nyomgázok és a részecskék a légkörből a földfelszínre jutnak, és amely folyamat jelentős szerepet játszik a szennyezők légköri életciklusában. Ez a szennyező-szállítás számos káros hatással hozható összefüggésbe az ökoszisztémák, a mesterséges környezet és az emberi egészséggel kapcsolatban. Ezért az

ülepedés fontos tényező a különböző fajtájú légköri kémiai transzport modellekben és felszíni kicserélődési modellekben.

A légköri gázok és részecskék kikerülése száraz vagy nedves ülepedés révén történhet meg. Száraz ülepedés során a gázok és részecskék a légkörből csapadék jelenléte nélkül jutnak a felszínre. Nedves ülepedés esetén pedig a gázokat és a részecskéket a hulló hidrometeorok sodorják magukkal és juttatják őket a különböző felszínekre, vagy kondenzációs magvakként kerülnek ki a légkörből. A száraz és a nedves ülepedés fontosságának aránya függ a kémiai anyagoktól és a (földrajzi) helytől. A száraz ülepedés folytonosan végbemenő folyamat, míg a nedves ülepedés csak csapadék jelenlétében következik be. Annak ellenére, hogy a száraz ülepedés sokkal lassabban zajlik, mint a nedves, a felhalmozódó elnyelt szennyezőanyag mennyiség jelentősebb lehet a száraz ülepedés esetén.

Mind a száraz, mind a nedves ülepedési folyamatok a gázok és részecskék tulajdonságaitól függnek, és számos környezeti változó befolyásolja őket (*Seinfeld et al.*, 1994).

2.5. Modell-eredmények kiértékelése és verifikációja

Egy modell pontossága a modell-adatok kiértékelésével, verifikációjával, és validációjával ellenőrizhető. A verifikációval igazolhatjuk, hogy a modell a kívánt viselkedést mutatja-e egy adott helyzetben. A validációval azt vizsgáljuk, hogy a program megfelelően írja-e le azokat a jelenségeket, amelyek céljából kifejlesztették azt. A kiértékelés során pedig felmérjük, hogy a modell milyen eredményeket ad, annak teljesítménye függvényében.

Annál megbízhatóbbnak tekinthető egy modell, minél sikeresebben becsli a mért adatokat. Azonban ezek a mérési adatok csak a valós légköri adatok közelítései, tartalmaznak mérési hibákat. A pontosság (a tényleges értékektől vett eltérés) általában nagy, a megbízhatóság (annak foka, hogy a modell azonos feltételek mellett azonos eredményeket ad) jónak tekinthető, de nehezen ellenőrizhető a változó légköri feltételek mellett. A legfőbb bizonytalanság a mérési adatok ismeretlen tér- és időbeli reprezentativitásából származik. Ezeket a bizonytalanságokat szem előtt kell tartani, mikor a modelleredmények és a mérések összehasonlítása megtörténik (*Schlünzen*, 1997).

3. A WRF és a WRF-Chem modellek

3.1. A WRF modell

A WRF (Weather Research and Forecast) modell, annak levegőkémiai kiegészítésével (WRF-Chem) csatolva lehetőséget biztosít a légköri kémia és az aeroszol részecskék modellezésére a felhőskáláktól egészen a regionális skálákig. A WRF-Chem egy közösségi modell, melynek fejlesztését a NOAA/ESRL (National Oceanic and Atmospheric Administration / Earth System Research Laboratory) vezeti, az NCAR (National Center for Atmospheric Research), a PNNL (Pacific Northwest National Laboratory), az EPA (United States Environmental Protection Agency) és egyetemi kutatók hozzájárulásával. A WRF-Chem egy online modell, amely figyelembe veszi az aeroszol részecskék direkt és indirekt hatásait. Az általános gázfázisú kémiai mechanizmusok között megtalálható a RACM (Regional Atmospheric Chemistry Model), a RADM2 (Regional Acid Deposition Model 2), a MOZART (Model of Ozone and Related Tracers), a CRIMech (Common Representative Intermediates Mechanism) és a CBMZ (Carbon-Bond Mechanism version Z), további kémiai beállítások pedig a KPP (Kinetic PreProcessor) elő-feldolgozó segédprogramon alapulnak. Az aeroszol részecskék leírására választható méretbeli, módbeli és tartománybeli séma. Több más lehetőség mellett a MEGAN (Model of Emissions of Gases and Aerosols from Nature) modellel a biogén emissziók, két elő-feldolgozóval pedig a vadtüzek is szimulálhatók.

A WRF modell az egyik legelterjedtebb időjárás előrejelző modell a világon, köszönhetően annak, hogy nyílt forráskódú és hogy hibajavítását, fejlesztését a szakemberek és felhasználók közössége folyamatosan végzi. Az egyesült államokbeli ügynökségek 2006. augusztus 31-én tértek át a WRF modellre és kezdték meg annak alkalmazását. Azóta számos tudományos publikáció látott napvilágot, amely a modell verifikációjával, érzékenységének vizsgálatával és kibővítésével foglalkozik (*Borge et al., 2008; Misenis & Zhang,* 2010).

Az Országos Meteorológiai Szolgálatnál több modellt is használnak operatív időjáráselőrejelzés céljából: az ECMWF, az AROME, és az INCA-HU modellek mellett a WRF modellt is, amelyet nagy felbontással (2,5 km) és nem-hidrosztatikus módban futtatnak naponta négyszer. A WRF modell alkalmazásával Dr. Horváth Ákos, az Országos Meteorológiai Szolgálat Viharjelző Obszervatóriumának vezetője és munkatársai nagyban elősegítették a balatoni viharjelzés numerikus módszerekkel való korszerűsítését. Az ELTE Meteorológiai Tanszékén is több kutatás foglalkozott a WRF modell alkalmazásával (*Nagy*, 2010; *Kovács*, 2013; *Ács et al.*, 2014).

A WRF újgenerációs numerikus időjárás előrejelző modellt az egyesült államokbeli NCAR és NOAA intézetek vezetésével több tudományos kutatóintézet és egyetem fejlesztette ki 2000ben, és azóta is folyamatosan fejlesztik. A modell 3-as számú verziója 2008 óta elérhető, amely többek között az alábbi lehetőségeket nyújtja a felhasználók számára (*Wang et al.*, 2014):

- összenyomható, nem-hidrosztatikus egyenletek hidrosztatikus opcióval,
- regionális és globális alkalmazás,
- kétirányú beágyazás, több modell-szinttel,
- mozgó beágyazások,
- különböző térképvetületi leképezések (projekciók): poláris sztereografikus, Lambertkonform (területtartó kúpvetület), Mercator (szögtartó hengervetület), szélességhosszúság (lat-lon),
- másod-, és harmadrendű Runge-Kutta idő-integrációs beállítások,
- horizontális és vertikális advekciós beállítások másodrendtől hatodrendig,
- teljes fizikai beállítások (1. táblázat) a felszíni talajra, a planetáris határrétegre, a légköri és a felszíni sugárzásra, a mikrofizikára és a cumulus-konvekcióra,
- óceán modellek,
- rács-analizációs "nudging",
- adaptív időléptetés.

1. táblázat. A modell bemeneti adatai és az azok által kiváltott hatások.

Bemenő adat	Kiváltott hatások
hőmérséklet	kémiai reakciók sebessége
	biogén emissziók
	aeroszol részecske dinamikája (koaguláció, evaporáció,
	kondenzáció)
hőmérséklet és nedvesség	aeroszol részecske képződése, gáz/aeroszol részecske
	elkülönülés, aeroszol részecske vízmegkötése, aeroszol
	részecske szilárd/folyékony fázisátalakulása
rövidhullámú sugárzás	fotolízis sebessége
fotoszintetikusan aktív sugárzás	biogén emissziók
folyékony víz a felhőkben és csapadék	folyékony fázisú kémia, például szulfát produkció
	aeroszol részecske dinamikája (aktiváció, koaguláció,
	aeroszol részecske-felhő folyamatok)
talajnedvesség	por emisszió, pollen emisszió
	száraz ülepedés (talajra és növényzetre)
szélsebesség	gázok és aeroszol részecskék transzportja, mezoskálájú
	áramlások, bifurkáció, cirkulációk
	por emisszió, tengeri só emisszió, pollen emisszió
légköri határréteg paraméterei	gázok és aeroszol részecskék turbulens és konvektív
	keveredése a légköri határrétegben, beáramlás a szabad
	troposzférából, száraz ülepedés a felszínen
villámlás	NO emisszió
vízgőz	OH gyökök
aeroszol részecskék (direkt hatás)	sugárzás (rövidhullámú sugárzás szórás/abszorpció,
	hosszúhullámú sugárzás abszorpció)
	látási viszonyok, köd
aeroszol részecskék (indirekt hatás)	felhők csepp/kristály-száma, felhő optikai távolság
	felhő élettartam
	csapadék (megvalósulás, intenzitás)
aeroszol részecskék (fél-direkt hatás)	lágleöni betámátog meteonelá - :-
	regkorr natarreteg meteorologia
O ₃	UV sugárzás
	hőmérsékleti infravörös sugárzás, hőmérséklet
NO ₂ , CO, VOC-ok	O3 prekurzorok, indirekt hozzájárulás az O3 sugárzási
	hatásokhoz
SO ₂ , HNO ₃ , NH ₃ , VOC-ok	másodlagos szerves és szervetlen aeroszol részecskék
	prekurzorai, indirekt hozzájárulás az aeroszol
	részecskék direkt és indirekt hatásaihoz
korom ülepedése jégen	felszíni albedóváltozás

3.2. A WRF-Chem modell

A WRF-Chem modell a WRF levegőkémiai folyamatokat (1. táblázat) is szimuláló kiegészítése, amely többek között az alábbi beállítási lehetőségeket tartalmazza:

- száraz ülepedés, talaj/vegetáció összeállítással csatolva,
- négy lehetőség az élővilággal kapcsolatos emissziók figyelembe vételére,
- három lehetőség az antropogén emissziók figyelembe vételére,
- számos lehetőség a gázfázisú kémiai mechanizmusok figyelembe vételére,
- három lehetőség a fotolízis figyelembe vételére,
- öt lehetőség az aeroszol részecske-beállításokra,
- a légköri sugárzásoknak az aeroszol részecskékre vett direkt és indirekt hatásainak figyelembe vétele fotolízis és mikrofizikai rutinokkal,
- az üvegházgázok passzív követő transzportja,
- két lehetőség a vulkanikus eredetű aeroszol részecskék figyelembe vételére,
- modell a futótüzekből származó emissziók figyelembe vételére.

A WRF-Chem-et levegőminőség-, vulkanikus hamu szétszóródás-, és időjárás-előrejelzések készítésére, illetve kutatási célokra használják. A WRF-Chem modell sokoldalúsága miatt nagy felhasználó és fejlesztő közösségre tett szert, melynek köszönhetően folyamatosan fejlesztik, és látják el új beállítási lehetőségekkel (*Baklanov et al.*, 2014).

A WRF-Chem modell (hasonlóan a WRF modellhez) elő- (WPS) és főfeldolgozó (WRF ARW) részekre osztható, amelynek végső kimeneti fájljait utófeldolgozó rendszerrel tudjuk megjeleníteni (**1. ábra**).

A modell futtatásához szükséges bemenő adatok:

- a meteorológiai adatok,
- a statikus földrajzi adatok,
- valamint a levegőkémia szempontjából fontos emissziós adatok:
 - MEGAN (Model of Emissions of Gases and Aerosols from Nature) biogén emissziók,

- GOCART (Goddard Chemistry Aerosol Radiation and Transport) globális háttér emissziók (por, tengeri só, biomassza égés),
- MOZART (Model of Ozone and Related Tracers) nyomgázok emissziói,
- antropogén emissziók.

1. ábra: A WRF-Chem modell felépítésének vázlata

A WPS alprogramjai:

- **geogrid.exe**: létrehozza a globális statikus földrajzi adatokból a modelltartományok kivágatát.
- **ungrib.exe**: kicsomagolja a tömörített meteorológiai adatokat.
- metgrid.exe: horizontálisan interpolálja a meteorológiai adatokat.

A WRF-ARW alprogramjai:

- real.exe: inicializálja az előfeldolgozó rendszer fájljait.
- wrf.exe: létrehozza a modellelőrejelzést.

3.3. A modell alkalmazásai

Az elmúlt évtizedben számos nemzetközi publikáció született, amelyben a WRF-Chem modellt használták légszennyezők koncentráció-változásainak vizsgálatára, illetve vetették össze a modellezett értékeket valós mérési adatokkal, valamint a modellbe épített visszacsatolások segítségével érzékenységvizsgálatokat végeztek különböző fizikai/kémiai sémabeállítások mellett.

Misenis et al. 2006-os tanulmányukban a WRF-Chem modellt alkalmazták 12 km-es horizontális rácsfelbontással a 2000. augusztus 28. - szeptember 2. időszakra, a Houston-Galveston körzetre, a Texasi Levegőminőség Tanulmány (Texas Air Quality Study, TexAQS-2000) keretében. A szimulációkat a RADM2 gáz-fázisú mechanizmus, a MADE (Modal Aerosol Dynamics Model for Europe) és a SORGAM (Secondary Organic Aerosol Model) aeroszol modell, két planetáris határréteg séma (Yonsei University, YSU és Mellor-Yamada-Janjic, MYJ séma) valamint két talaj-felszín modell (Slab és Noah sémák) vezérelték, majd a TexAQS-2000-ből vett mérési eredmények segítségével értékelték ki a modellt. A meteorológiai előrejelzések (például hőmérséklet, relatív nedvességtartalom, szélsebesség és szélirány, planetáris határréteg (PHR) magasság) és a kémiai előrejelzések (például ózon és PM_{2.5}) érzékenységét vizsgálták a meteorológiai sémák változtatása esetén. Esetükben a Slab és YSU sémákkal futtatott szimuláció pontosabbnak bizonyult a normalizált átlagos eltérést tekintve, mint a Noah és YSU sémákkal futtatott szimuláció. Az ózon és a PM2.5 koncentráció-mérésekkel összehasonlítva a Noah és a Slab és YSU sémákkal futtatott szimulációk jelentősen alulbecsülték a nappali, illetve jelentősen felülbecsülték az esti ózonkoncentrációkat (teljes nettó felülbecsléssel az esti felülbecslés dominanciája miatt), valamint jelentősen felülbecsülték a PM_{2,5} koncentrációját a legtöbb terülten és időszakban. A Noah és YSU sémákkal futtatott szimulációk pontosabbak, mint a Slab és YSU sémákkal futtatottak az ózon (32,3% - 36,0%) és a PM_{2,5} (22,4% - 33,3%) koncentrációk esetén (*Misenis et al.*, 2006).

Tie és et al. 2007-es munkájukban kémiai oxidánsok keletkezését, főként az ózonét vizsgálták Mexikóvárosban a WRF-Chem kémiai/dinamikai modellel. Az ózon (O_3), a szén-monoxid (CO) és a nitrogén-oxidok (NO_x) szimulált napi ciklusai mennyiségben és időben, illetve az ózon maximum, és minimum koncentrációi jól közelítették a felszíni mérési eredményeket. Analízisünkkel kimutatattak egy erős napi ciklust az O_3 koncentrációjában, amely főként a fotokémiai változásoknak tulajdonítható, míg a CO és NO_x napi menetei jellemzően az emissziók és a határréteg-magasság változásainak volt az eredménye. Egy érzékenységi vizsgálatban az aromás szénhidrogének (HC) és az alkének oxidációs reakciói adták a legnagyobb O₃ képződési sebességet. Az alkének oxidációja, amely gyorsabb, kora reggel volt domináns. A kora délelőtti órákra az alkének koncentrációi lecsökkentek, és az aromás vegyületek oxidációja vált dominánssá, kevesebb hozzájárulással az alkánoktól és a CO-tól. Az O₃ koncentrációknak az NO_x és HC emissziókra vett érzékenységét felmérték. Eredményeik azt mutatták, hogy a nappali O₃ képződés HC-limitált Mexikóváros nagyvárosi térségében, így a HC emissziókban bekövetkező növekedés megnövelte az O₃ keletkezését, azonban a NO_x emissziókban bekövetkező növekedés csökkentette azt. Ugyanakkor a NO_x és a HC emisszióinak együttes növekedése még nagyobb O₃ növekedést idézett elő, mint a HC-k egymagukban. A HC emissziók becslésének bizonytalansága szimulációikban nagy pontatlanságot eredményezett a számított nappali O₃ koncentrációkban, míg a NO_x emissziók

A Hongkong felett 2001. szeptember 14–19 között áthaladó Nari tájfun miatt bekövetkező folyamatos és nagyfokú fotokémiai szennyezési eseményt tanulmányozták Jiang et al. 2008ban a WRF-Chem regionális levegőminőségi modellel (v2.1), amelyben a meteorológiai modellt (WRF) és a kémiai modellt (Chem) teljesen online csatolták. Ezen esemény során a hongkongi regionális levegőminőségi figyelő állomások magas O_3 , CO és NO_x koncentrációértékeket mértek hat napon keresztül. A vizsgálatok kimutatták, hogy a WRF-Chem képes ezen folytonos fotokémiai szennyezési esemény alapvető szimulálására, a legjobb korrelációs együttható a szimulált és a megfigyelt O_3 koncentrációk között 0,84-nek adódott. A szimulált meteorológiai feltételek magas hőmérsékletet, alacsony relatív nedvességtartalmat, erős napsugárzást, északias légáramlást, és stabil határréteg szerkezetet mutattak Hongkongban a tájfun áthaladása során; ezek az időjárási jellemzők segítették elő a fotokémiai szennyezés létrejöttét és fennmaradását. A légszennyezők a tájfun rendszerének stabil külső részének leáramlása miatt felhalmozódtak a határréteg alsó szintjében, amely magas O_3 koncentrációhoz vezetett (*Jiang et al.*, 2008).

Wang et al. 2010-es munkájukban az antropogén emissziók egy finom időbeli (évszakos, hetes, napos) és vertikális felbontású eloszlását fejlesztették ki a TRACE-P adatbázis számára, és értékelték ki a kelet-ázsiai levegőminőség előrejelzésekre való kihatásukat, amelyet a WRF-Chem modellel szimuláltak 2001 júliusára, 30 km-es rácsfelbontással, a rendelkezésre álló EANET és NEMCC felszíni mérésekkel összevetve. NO₂-re és SO₂-re az emissziók napi

és vertikális újra-eloszlásának alapvető szerepe volt, míg a hét napjainak változását kevésbé meghatározónak találták. Az érzékenység különösen nagy a főbb városok és ipari területek felett, ahol a felszíni NO₂ és SO₂ koncentrációk lecsökkennek a skálázott emissziók használatával. A modell az emissziók mindhárom újra-eloszlásának beszámításakor a felszíni O₃ koncentrációt magasabbnak szimulálja este, és szintén magasabbnak napközben Észak-, Kelet- és Közép-Kína nagy kiterjedésű területein. Ehhez az érzékenységhez a napi újraeloszlás jobban hozzájárul, mint az évszakos és a hetes (*Wang et al.,* 2010).

Grell et al. 2011-es tanulmányukban egy csóva-emelkedési algoritmussal látták a WRF-Chem-et a vadtüzekre, és alkalmazták a 2004-es heves alaszkai vadtüzek idényében, hogy vizsgálják azok hatását az időjárási szimulációkra 10 km-es és 2 km-es modellfelbontás használata mellett. A biomassza égés emisszióit egy biomassza égési modellel becsülték, továbbá egy 1D-s időfüggő felhő-modellt használtak az online WRF-Chem-ben, hogy becsülni tudják a kibocsátási magasságokat, illetve az emissziós ráták vertikális eloszlását. Megmutatták, hogy a 2004-es heves vadtüzek modell szimulációkba történő beszámításával az aeroszoloknak a légköri sugárzással való kölcsönhatásai jelentős változásokhoz vezettek a hőmérséklet és a nedvességtartalom vertikális profiljában a felhő-mentes területeken. Másrészt, felhőborított területeken az aeroszol (PM_{2,5}) magas koncentrációi és a felhő kondenzációs magvak nagy száma erős hatást gyakorolt a felhők mikrofizikájára, lecsökkent csapadék-lefedettséggel és csapadékösszegekkel az integrálás első 12 órájában. A délutáni viharok konvektív természetűek voltak, és erősebbnek tűntek, valószínűleg az aeroszolok sugárzással vett kölcsönhatása (a megnövekedett CAPE-n keresztül), illetve a felhőmikrofizikával vett kölcsönhatása eredményeként (*Grell et al.*, 2011).

Az online meteorológiai és kémiai transzport WRF-Chem modellt alkalmazták egy európai modelltartományon Tuccella et al. 2012-ben publikált cikkükben, aeroszol-felhő visszacsatolás nélkül futtatva a 2007-es évre, és felszíni mérésekkel validálva. Az Európai Megfigyelési és Kiértékelési Program (*European Monitoring and Evaluation Programme*, EMEP) antropogén emissziós adattárát integrálták a modell elő-feldolgozó részébe. A szimulált átlagos hőmérséklet alacsony negatív eltérést mutatott, a relatív nedvességtartalmat és a szélsebességet viszont túlbecsülte a modell. A szimulált órás O₃ koncentrációk a mérési értékekkel 0,62-es korrelációt mutattak, és a napi maximum körülbelül 4%-kal volt alulbecsült. Egy általános O₃ alulbecslés jelentkezett tavasszal, míg felülbecslés ősszel, valószínűleg a hibás interkontinentális közlekedés időfüggetlen határfeltételeivel összefüggésben. A napi NO₂-t \pm 15%-on belül 0,57-es korrelációs együtthatóval sikerült

szimulálniuk. A modell alulbecsülte a részecskékből álló kén mennyiségét egy 1/2-es szorzóval, az ammónia és a nitrátok mennyiségét pedig felülbecsülte egy körülbelül 2-es szorzóval. Az eltérés lehetséges okait érzékenységvizsgálattal elemezték, és kimutatták, hogy a vizes fázisban a hidrogén-peroxid (H_2O_2) és O_3 által oxidálódó SO₂ a WRF-Chem-ből hiányzó, aeroszol-felhő visszacsatolások nélküli beállítása magyarázza a különbségeket (*Tuccella et al.*, 2012).

4. A WRF-Chem modell adaptálása

Kutatásaink alapvető célja volt, hogy a WRF-Chem modellt alkalmassá tegyük a Kárpátmedencére és azon belül egy szűkebb modelltartományra (Budapest térsége), finomabb rácsfelbontáson végzett szimulációk elvégzésére. Ehhez számos beállítási lépést, előfeldolgozást kellett végrehajtani.

A WRF-Chem modell adaptálását a következő főbb lépésekben végeztük el:

- 1. A környezeti változók beállítása, a modell és a segédprogramok letöltése, fordítása
- 2. A bemeneti fájlok megadása
- 3. A modellbeállítások elvégzése
- 4. A modell futtatása
- 5. A kimeneti fájlok értelmezése

Az alábbiakban részletezzük a WRF-Chem modell adaptálásának és futtatásának lépéseit:

- A kezdeti lépés a nyílt forráskódú WRF-Chem modell és a segédprogramok telepítése, illetve a telepítéshez szükséges környezeti változók beállítása.
 - a) WRF:
 - NetCDF (*Network Common Data Form*)
 - MPICH (Message Passing Interface Chameleon)
 - Zlib (*Zip Library*)
 - libpng (Portable Network Graphics reference Library)
 - JasPer (Java Aid with Sets of Pertinent Elements for Recognition)
 - b) WRF-Chem, KPP:
 - flex (*The Fast Lexical Analyzer*)
 - yacc (Yet Another Compiler Compiler)
 - sed (*Stream Editor*)
 - c) Prep-Chem Sources (a bináris emisszió-fájlok létrehozásához):
 - JPEG (Joint Photographic Experts Group)
 - HDF5 (*Hierarchical Data Format*)

A modellt a UNIX rendszereken használatos *gfortran* programnyelven fordítottuk le elosztott memória beállítása mellett (dmpar, *distributed memory option* (MPI)). A modell-szimulációkhoz használt számítógép adatai: Ubuntu Linux 12.04 LTS server 64bit INTEL Xeon (Phi) 2,6 GHz, 4 magos (8 szál), 12 Gb RAM.

2. A bemenő adatok megadása

A modell számára fontos bemenő meteorológiai adatokat az amerikai NOAA által futtatott numerikus időjárás előrejelző számítógépes modell, a GFS (*Global Forecast System*) adja, amelyek $0,25^{\circ} \times 0,25^{\circ}$ -os felbontással érhetőek el 2015 óta (http://www.nco.ncep.noaa.gov/pmb/products/gfs/).

3. A modellbeállítások konfigurálása

A konfigurálás az ún. "namelist" fájlokkal, a namelist.wps (WPS) és a namelist.input (WRF-ARW) fájlokkal történt. Ezek a fájlok tartalmazzák a legnagyobb ("szülő") és az abba beágyazott kisebb szimulációs tartományok számát és elrendezését, időbeli és térbeli határaikat, felbontásukat, valamint a különböző fizikai és kémiai séma beállításokat, a kiválasztott térképvetület típusát, illetve más beállításokat. A számos fizikai és kémiai sémabeállítások közül a fontosabbak:

- Mikrofizikai séma (WRF Single-Moment 5-class scheme (Mielikainen et al., 2012))
- Sugárzási séma (Rapid Radiative Transfer Model (*Mlawer & Clough*, 1997))
- Határréteg séma (Yonsei University scheme (Hu et al., 2013))
- Cumulus parametrizáció (Grell 3D (Grell & Dévényi, 2002))
- Turbulencia, keveredés és diffúzió (Simple diffusion (Pleim, 2007))
- Kémiai séma (por)

A sémákat szakirodalomi hivatkozások alapján (Wang et al., 2014) állítottuk be.

4. A modell futtatása

A *namelist* fájlok beállítását követően a WPS előfeldolgozó modulban megtörténhet a modell szimulációs tartományainak, illetve a meteorológiai mezőknek a megadott rácsra való illesztése. Az előfeldolgozó rész kimeneti fájljainak segítségével a WRF főfeldolgozó modul elvégzi a végső inicializálást (*real.exe*). A következő lépés a WRF kimeneti fájljainak elmentése után az emisszió-adatok megadása. A *namelist* fájlok levegőkémiai részének beállítását követően konvertáljuk az emisszió-mezőket. Az így kapott kiegészítő bemeneti fájlokkal együtt újra futtatható a WRF modul, a kimeneti fájlok pedig az időjárási mezők mellett már tartalmazni fogják a kívánt koncentráció-adatokat is.

5. A kimeneti fájlok értelmezése

A WRF-Chem modell kimeneti fájljaiból a meteorológiai változók előrejelzett értékei mellett a levegőkémiai adatok is megjeleníthetők. A levegőkémiai adatok között olyan változók találhatók meg, mint a CO₂, CH₄, HO, O₃, és NH₃ keveredési arányok, a por és tengeri só részecske-méretek, PM_{2,5} és PM₁₀ koncentrációk stb. Az ábrák elkészítéséhez a NASA Panoply nevű programját használtam.

5. Eredmények

5.1. Nagytérségű koncentráció mezők vizsgálata

Esettanulmány: 2010. július 14-15., Mediterrán térség

Az alábbi esettanulmányt azért tartottuk fontosnak elvégezni a Budapestre történő adaptálás előtt, mivel ez a modelltartomány több, a WRF-Chem modell segítségével szimulálható légköri szennyezőt is tartalmaz, például tengeri sót, port, izoprént, szén-monoxidot stb. Az eredmények ábrázolásához a NASA Panoply nevű programját használtam.

A namelist fájlokban megadott idő-, és térbeli paraméterek:

- Szimuláció kezdete: 2010. 07. 14., 00 UTC
- Szimuláció vége: 2010. 07. 16., 00 UTC
- Szimuláció időtartama: 48 óra (2 nap)
- Térkép-projekció típusa: Lambert-féle kúpvetület
- Referencia szélesség: 35°
- Referencia hosszúság: 25°
- Felbontás: 100 km × 100 km
- Nyugat-Kelet méret: 41 rácspont
- Dél-Észak méret: 41 rácspont
- Bemenő adatok időfelbontása: 6 óra
- Kimenő adatok időfelbontása: 1 óra

2010. július 14-én az európai kontinens időjárását magasnyomású anticiklon alakította, záporok, zivatarok főként Nagy-Britannia és a Skandináv-félsziget területén fordultak elő (2. ábra). Hazánk időjárása is napsütéses volt, a kánikula még napokig eltartott.

2. ábra: A 2010. július 14-i időjárási helyzet. Forrás: http://www.met.hu

Porkoncentráció vizsgálata

A kimeneti fájlban megtalálható az erodálódni képes talajhányad mező százalékos értékekkel. Ez a mező a sivatagos szárazföldi területeken magas, míg az európai területeken alacsony értékeket mutat (**3. ábra**). A modell a porkoncentrációkat öt, méret szerint elkülönített mezőbe írja ki, ezek a 0,5 µm, 1,4 µm, 2,4 µm, 4,5 µm, és 8,0 µm effektív sugarú porrészecskéket jelentik. Azok a területek, ahol az erodálódni képes talajhányad értékei magasak, gyakorlatilag forrásként szolgálnak a 2,4 µm effektív sugarú porrészecskék számára, ezért itt ezeknek a részecskéknek a koncentrációja nagy (**4. ábra**).

Erodálódni képes talajhányad (2010-07-14)

3. ábra: Az erodálódni képes talajhányad százalékos értékei 2010. július 14-ére.

Porkoncentráció (reff=2,4 µm) (2010-07-14_19_00_00)

4. ábra: A 2,4 µm effektív sugarú porrészecskék koncentrációja 2010. július 14-én, 19 UTC-kor.

Biomassza égés vizsgálata

2010 nyara számos hőségriadót hozott Európa-szerte, vadtüzeket okozva Oroszországban, Ukrajnában és Görögországban. A vadtüzek – a tökéletlen égésnek köszönhetően – lényeges CO források. Ezek a források szintén megadhatók az emissziós adatfájlokban (**5. ábra**).

Tengeri só vizsgálata

A tengeri só részecskéi (hasonlóan a por részecskéihez) bizonyos méretkorlátok között képesek felhő-kondenzációs magvakként viselkedni, terjedésük szimulációja így fontos lehet a felhő-, és csapadékképződés szempontjából. A tengeri só esetében is több effektív sugarat különböztet meg a modell-kimenet, ezek a 0,3 µm, 1,0 µm, 3,2 µm, és 7,5 µm értékeknek felelnek meg. Az 1,0 µm effektív sugarú tengeri só részecskék koncentrációja (**6. ábra**) a Földközi-tenger felett mutat magasabb értékeket, amely időbeli változását tekintve telítést mutat. Ez a hatás úgy küszöbölhető ki, ha a modelleredményeket bemenő adatokként adjuk meg, így ciklizáljuk a modellt.

Biogén emissziók vizsgálata

A WRF-Chem modell a növényzet leírására több mezőt is készít, az egyik ezek közül a növények által kibocsátott izoprén emissziója (**7. ábra**). A vegetációra jellemző másik fontos mennyiség a havi levélfelületi index (*Monthly Leaf Area Index*, MLAI) (**8. ábra**). A két mező várt hasonlósága szembetűnő.

A szálló por (PM_{2,5} és PM₁₀) terjedésének vizsgálata

A bemenő GFS meteorológiai adatok tartalmazzák az erodálódni képes talajhányadot, amelynek értéke a sivatagi területeken maximális (0,4 körüli). A globális szálló por emissziók (például a PM_{10}) (**9. ábra**) megadása után a modell a meteorológiai változók figyelembevételével képes meghatározni a szálló por légköri koncentrációit (**10. ábra**). A Földközi-tenger déli partján a megélénkülő – a meteorológiai térképen látható ciklon hidegfrontjából származó – északias áramlás megnöveli a PM_{10} koncentrációt, illetve a déli területek felé szállítja azt.

CO emisszió (biomassza égés) (2010-07-14)

5. ábra: A biomassza égési forrásokból származó CO emisszió 2010. július 14-ére.

Tengeri só koncentráció (reff=1,0 µm) (2010-07-14_19_00_00)

6. ábra: A 1,0 μm effektív sugarú tengeri só részecskék koncentrációja 2010. július 14-én, 19 UTCkor.

lzoprén emisszió (2010-07-14)

7. ábra: Az izoprén emissziója 2010. július 14-én.

Havi levélfelületi index (2010-07-14)

8. ábra: A havi levélfelületi index 2010. július 14-én.

PM10 emisszió (2010-07-14)

9. ábra: A PM₁₀ emissziója 2010. július 14-én.

PM10 koncentráció (2010-07-14_22_00_00)

10. ábra: A PM₁₀ koncentrációja 2010. július 14-én 22 UTC-kor.

5.2. Sivatagi por terjedésének vizsgálata

2012. június 21–22-én nagy mennyiségű sivatagi por vonult át hazánk felett. A port egy délnyugatias irányú áramlás szállította Észak-Afrikából Európa felé, amely egy magas nyomású anticiklon, és egy azt követő alacsony nyomású ciklon közös áramlási rendszere alakított ki (**11. ábra**). A sivatagi port az Európai Űrügynökség (*European Space Agency*, ESA) Meteosat műholdja is érzékelte (**12. ábra**). Jelentősebb csapadék június 22-e előtt nem hullott, ezért a nedves ülepedés nem befolyásolta a szálló por (PM₁₀) légköri koncentrációjának alakulását.

11. ábra. A 2012. június 21-i időjárási helyzet. Forrás: http://www.met.hu.

12. ábra. Műholdfelvétel a sivatagi porról. A műholdképen jól látszik az Észak-Afrikából származó és a Földközi tenger felett áthaladva Közép-Európáig eljutó por.. Forrás: METEOSAT (ESA), SEVIRI szenzor, 2012. június 20

A WRF-Chem modellt a természetes forrásból származó szaharai por terjedésének szimulációjához 14 nappal a Magyarország felett történő átvonulás előtt indítottuk, és a kimeneti fájlok alapján az esemény időbeli lefolyását vizsgáltuk. A modellezett értékeket hazai PM₁₀ koncentrációmérési adatokkal vetettük össze. A szálló por útját a legkülső modelltartományon a **13. ábra** szemlélteti 6 óránkénti időlépésben. A szálló por Magyarország területét a modellfuttatás szerint 20-án 00 és 06 UTC között (**14. ábra**), Budapestet pedig 21-én 00 és 06 UTC között érte el (**15. ábra**).

A Budapestre történő adaptálás lényegében a modellparaméterek megfelelő beállítását jelenti, a már futtatásra alkalmas WRF-Chem modell esetében.

A namelist fájlokban megadott idő-, és térbeli paraméterek:

- Szimuláció kezdete: 2012. 06. 09., 00 UTC
- Szimuláció vége: 2012. 06. 23., 00 UTC
- Szimuláció ideje: 336 óra (14 nap)
- Térkép-projekció típusa: Lambert-féle kúpvetület

- Referencia szélesség: 42,50°
- Referencia hosszúság: 19,12°
- Felbontás: rendre 30 km \times 30 km; 10 km \times 10 km; 2 km \times 2 km
- Nyugat-Kelet méret: rendre 152 rácspont; 76 rácspont; 51 rácspont
- Dél-Észak méret: rendre 137 rácspont; 46 rácspont; 51 rácspont
- Bemenő adatok időfelbontása: 3 óra
- Kimenő adatok időfelbontása: 1 óra

Porkoncentráció (reff=2,4 µm) (2012-06-20-23)

13. ábra. A 2,4 μm effektív sugarú porrészecskék koncentrációja 2012. június 20-a 00 UTC és 22-e 18 UTC között, 6 órás időközönként, az európai észak-afrikai modelltartományra.

Porkoncentráció (reff=2,4 µm) (2012-06-20-23)

14. ábra. A 2,4 μm effektív sugarú porrészecskék koncentrációja 2012. június 20-a 00 UTC és 22-e 18 UTC között, 6 órás időközönként, a Kárpát-medencei modelltartományra.

Porkoncentráció (reff=2,4 µm) (2012-06-20-23)

15. ábra. A 2,4 μm effektív sugarú porrészecskék koncentrációja 2012. június 20-a 00 UTC és 22-e 18 UTC között, 6 órás időközönként, a budapesti modelltartományra.

Az Országos Légszennyezettségi Mérőhálózat (OLM) automata mérőállomásainak adatait felhasználva (http://www.levegominoseg.hu) összehasonlítottuk a szimulált és a valós átvonulás során bekövetkező porkoncentráció-változásokat. Az adatbázis vizsgált mérőállomásai (nyugat-keleti irányban): Győr (Szent István út), Pécs (Szabadság utca), Budapest (Pesthidegkút, Széna tér, Káposztásmegyer, Gilice tér), Szolnok (Ady Endre út), Miskolc (Búza tér), Debrecen (Hajnal utca). Az nyugati irányból érkező sivatagi por a felsorolt városokban változásokat okozott a szálló por légköri koncentrációjában: többletként jelent meg az antropogén kibocsátás (főként közlekedés) mellett, PM₁₀ koncentráció-

maximumokat illetve -minimumokat növelve meg. Győrött június 20-án, dél körül volt tapasztalható egy koncentrációemelkedés, míg Pécsett 21-én dél körül (**16. ábra**). Budapesten (Gilice tér) a modellfuttatással megegyező időpontban, 00 és 06 UTC között volt kiugró koncentrációemelkedés, a budapesti mérőállomások között viszont a kisebb távolságok miatt már nem volt kimutatható a por terjedésének menete (**17. ábra**).

16. ábra. A szálló por (PM₁₀) légköri koncentrációjának alakulása 2012. június 18-a 01 óra, és június 24-e 23 óra között Győrre és Pécsre.

17. ábra. A szálló por (PM₁₀) légköri koncentrációjának alakulása 2012. június 18-a 01 óra, és június 24-e 23 óra között Budapestre (Gilice tér, Káposztásmegyer, Pesthidegkút, Széna tér).

Szolnokon és Miskolcon a szálló por koncentrációja 21-én az esti órákban nőtt meg hozzávetőlegesen 20 μ g/m³ értékkel, Debrecenbe pedig – a modellfuttatással összhangban – a sivatagi por már nem jutott el kimutatható módon, a por koncentrációja pedig az esőzések hatására 22-ére nagymértékben lecsökkent (**18. ábra**).

18. ábra. A szálló por (PM₁₀) légköri koncentrációjának alakulása 2012. június 18-a 01 óra, és június 24-e 23 óra között Szolnokra, Miskolcra, valamint Debrecenre.

Annak vizsgálatára, hogy elegendő-e 14 nap helyett csak 7 nappal a porátvonulás előtt indítani a szimulációt, összehasonlítottam a budapesti rácspontra kapott értékeket 14, illetve 7 napos futások esetén. A 2 hétre történő futtatás magasabb természetes porkoncentráció értékeket adott, mint az 1 hetes (**19. ábra**), vagyis nagyskálájú transzportfolyamatok modellezésekor ügyelnünk kell az elegendően hosszú felfutási időre. (A modell által $[\mu g/kg_{száraz} \ levegő]$ egységben megadott koncentrációértékek $[\mu g/m^3]$ egységbe való átváltásához a levegő sűrűségét 1,2 kg/m³ értékűnek vettem.)

19. ábra. A szálló por (PM_{10}) légköri koncentrációjának alakulása 2012. június 20-a 00 óra, és június 22-e 23 óra között Budapestre, valamint a 14 napos és a 7 napos futtatások porkoncentráció értékei a budapesti rácspontra.

5.3. Érzékenységvizsgálat a mikrofizika változtatásával

A továbbiakban a mikrofizikai séma változtatásának hatását vizsgáltuk – a többi beállítást változatlanul hagyva – két 4 napos időszakra: 2014. 11. 15.–18. és 2015. 04. 07.–10. között. Az alkalmazott mikrofizikai sémák leírása (*Wang et al.*, 2014):

- Lin et al. séma (2): egy kifinomult jég, hó és graupel folyamatokat kezelő séma, alkalmas valós, nagyfelbontású szimulációkhoz.
- WSM 5-osztályú séma (*WRF Single-Moment 5-class scheme*) (4): a jég és hó folyamatokat tartalmazó 3-osztályú WSM séma továbbfejlesztése, amely már kevert fázisú folyamatokat és túlhűtött vizet is képes szimulálni, javasolt mezoskálájú felbontás mellett alkalmazni.
- Új Thompson et al. graupel séma (8): jég, hó és graupel folyamatokat szimuláló új séma, nagyfelbontású szimulációkhoz javasolt.

A 6 modellfuttatás (3 sémával, 2 időszakra) szimulált 2 m-es hőmérséklet adatait összevetettem a Gilice téri (Budapest, Pestszentlőrinc) meteorológiai mérőállomás mért léghőmérséklet adataival. Az adatok forrása az OGIMET szabadon hozzáférhető szinoptikus táviratok tárhelye volt (http://www.ogimet.com/).

A 2014. november 15-e és 18-a közötti időszakban hidegfront haladt át hazánk felett, amely a főváros területén 17-én még csak nyomnyi mennyiségű csapadékot eredményezett, 18-án azonban a napi csapadékösszeg a 7–10 mm-t is elérte. A front érkezésével a mért és a szimulált hőmérsékletértékek közötti eltérések megnőttek, mindhárom séma felülbecsülte a valós értékeket, a legkisebb túlbecslést a WSM 5 séma adta (**20. ábra**).

A 2015. április 7-e és 10-e közötti időszakban egy ciklont követő magasnyomású anticiklon alakította országunk időjárását, a 4 nap során eloszlatva a ciklon felhőzetét. A mért és a szimulált hőmérsékletértékek közötti különbséget a felhősebb első napon még nagyobb eltérés jellemezte, majd 7-e után az eltérések csökkentek, még a különböző sémák között is (**21. ábra**).

20. ábra. A 2 m-es léghőmérséklet mért (Gilice tér) és szimulált (Lin et al., WSM 5, Thompson et al.) értékei, valamint a mért és szimulált értékek eltérése 2014. 11. 15-e és 18-a között.

21. ábra. A 2 m-es léghőmérséklet mért (Gilice tér) és szimulált (Lin et al., WSM 5, Thompson et al.) értékei, valamint a mért és szimulált értékek eltérése 2015. 04. 07-e és 10-e között.

6. Összefoglalás

Diplomamunkámban adaptáltam a WRF-Chem integrált időjárás előrejelző-levegőkémiai modellt a Kárpát-medence, illetve Budapest térségére. E modellt egy OTKA kutatási program keretében Budapest levegőminőségének vizsgálatára kívánjuk alkalmazni. Ehhez első lépésben szükség volt az összetett modell-rendszer elemeinek megismerésére, és rutinszerű alkalmazásának elsajátítására. A dolgozatban részletesen bemutattam a modell adaptálásának lépéseit, és esettanulmányokon szemléltettem néhány alkalmazási lehetőségét.

A levegőkémiával integrált időjárás-előrejelző WRF-Chem modell futtatásával a szálló por terjedését és légköri koncentrációjának változásait modelleztem olyan speciális időjárási helyzetre, amely során nagymennyiségű természetes forrásból érkező por haladt át hazánk felett. A szimulált porkoncentráció értékeket valós mérési adatokkal vetettem össze. Ezt követően egy érzékenységvizsgálatot végeztem el a mikrofizikai séma változtatásával 2 eltérő időjárási helyzetre. A modell által számított 2 m-es hőmérséklet értékeit a budapesti Gilice téren található meteorológiai állomás adataival hasonlítottam össze.

A WRF-Chem modell segítségével levegőminőség-előrejelzés állítható elő adott tartományokra és időszakokra. A modellfejlesztésnek fontos szerepet tulajdonítunk a továbbiakban, a modelleredmények pontosítása e nélkül ugyanis nem valósítható meg. A modellel készített meteorológiai és légszennyezettségi előrejelzések minősége a továbbiakban az antropogén eredetű légszennyezők emissziójának megadásával, a különböző parametrizációs sémák változtatásának érzékenységvizsgálatával, valamint a kezdeti mezők finomításával (adatasszimilációval) javítható.

Köszönetnyilvánítás

Köszönetet mondok témavezetőimnek, Mészáros Róbertnek, Leelőssy Ádámnak és Lagzi Istvánnak a szakmai segítségnyújtásért, és a türelmes, inspiráló vezetésért. A kutatást az OTKA 109109 és 109361 kutatási pályázatok támogatták.

Irodalomjegyzék

- Badia, A., & Jorba, O. (2014). Gas-phase evaluation of the online NMMB/BSC-CTM model over Europe for 2010 in the framework of the AQMEII-Phase2 project. *Atmospheric Environment*.
- Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., & Gross, A. (2008). ENVIRO-HIRLAM: on-line coupled modelling of urban meteorology and air pollution. Advances in Science and Research, 2, 41–46.
- Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., ... & Zhang, Y. (2014). Online coupled regional meteorology chemistry models in Europe: current status and prospects. *Atmospheric Chemistry and Physics*, 14(1), 317–398.
- Barbu, A. L., Segers, A. J., Schaap, M., Heemink, A. W., & Builtjes, P. J. H. (2009). A multi-component data assimilation experiment directed to sulphur dioxide and sulphate over Europe. Atmospheric Environment, 43(9), 1622–1631.
- Borge, R., Alexandrov, V., José del Vas, J., Lumbreras, J., & Rodríguez, E. (2008). A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmospheric Environment, 42(37), 8560–8574.
- Chapman, E. G., Gustafson Jr, W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., & Fast, J. D. (2009). Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmospheric Chemistry and Physics, 9(3), 945–964.
- Flemming, J., Innes, A., Stein, O., Huijnen, V., Arteta, J., Elbern, H., & Woodhouse, M. (2012). Updated development plan for C-IFS. MACC-II report RG D, 57.
- Forkel, R., & Knoche, R. (2006). Regional climate change and its impact on photooxidant concentrations in southern Germany: Simulations with a coupled regional climate-chemistry model. Journal of Geophysical Research: Atmospheres (1984–2012), 111(D12).

- Grell, G., & Baklanov, A. (2011). Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. *Atmospheric Environment*, 45(38), 6845– 6851.
- Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. *Geophysical Research Letters*, 29(14), 38-1.
- Grell, G., Freitas, S. R., Stuefer, M., & Fast, J. (2011). Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts. *Atmos. Chem. Phys*, 11(11), 5289– 5303.
- Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H., & Mitchell, H. L. (1996). A system simulation approach to ensemble prediction. Monthly Weather Review, 124(6), 1225–1242.
- Hu, X. M., Klein, P. M., & Xue, M. (2013). Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. Journal of Geophysical Research: Atmospheres, 118(18), 10–490.
- 14. Jacobson, M. Z. (2005). Fundamentals of atmospheric modeling. Cambridge University Press.
- Jiang, F., Wang, T., Wang, T., Xie, M., & Zhao, H. (2008). Numerical modeling of a continuous photochemical pollution episode in Hong Kong using WRF-chem. *Atmospheric Environment*, 42(38), 8717–8727.
- Kaminski, J. W., Neary, L., Struzewska, J., McConnell, J. C., Lupu, A., Jarosz, J., ... & Richter, A. (2008). GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes. Atmospheric chemistry and physics, 8(12), 3255–3281.
- 17. *Kampa, M., & Castanas, E.* (2008). Human health effects of air pollution. *Environmental pollution, 151(2), 362–367.*
- Korsholm, U. S., Baklanov, A., Gross, A., Mahura, A., Sass, B. H., & Kaas, E. (2008). Online coupled chemical weather forecasting based on HIRLAM–overview and prospective of Enviro-HIRLAM. *HIRLAM newsletter*, 54, 151–168.

- Kovács M. E. (2013). WRF modellre alapozott napi szélenergia előrejelzések beválásának statisztikai vizsgálata, az alkalmazott számítási módszer optimalizálása (MSc. diplomamunka).
- 20. Kushta, J., Astitha, M., Solomos, S., & Kallos, G. (2013). Chemical Weather Forecasting using the online fully integrated modeling system RAMS/ICLAMS-Comparison with the offline approach. In EGU General Assembly Conference Abstracts (Vol. 15, p. 5573).
- Liang, X. Z., Xu, M., Choi, H. I., Kunkel, K. E., Rontu, L., Geleyn, J. F., ... & Wang, J. X. (2006). Development of the regional Climate–Weather Research and Forecasting model (CWRF): Treatment of subgrid topography effects. In *Proceedings of the 7th Annual WRF User's Workshop, Boulder, CO* (pp. 19–22).
- Maurizi, A., Mircea, M., D'Isidoro, M., Vitali, L., Monforti, F., Zanini, G., & Tampieri, F. (2008). BOLCHEM Air Quality Model: Performance Evaluation Over Italy. In Air Pollution Modeling and Its Application XIX (pp. 702–704). Springer Netherlands.
- Mielikainen, J., Huang, B., Huang, H. A., & Goldberg, M. D. (2012). Improved GPU/CUDA based parallel weather and research forecast (WRF) single moment 5-class (WSM5) cloud microphysics. Selected Topics in *Applied Earth Observations and Remote Sensing, IEEE Journal of, 5(4)*, 1256–1265.
- 24. Misenis, C., Hu, X. M., Krishnan, S., Zhang, Y., & Fast, J. (2006). Sensitivity of WRF/Chem predictions to meteorological schemes. In 86th Annual Conference/14th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA, Atlanta, GA, USA (Vol. 27).
- 25. *Misenis, C., & Zhang, Y.* (2010). An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. *Atmospheric Research*, *97(3)*, 315–334.
- Mlawer, E. J., & Clough, S. A. (1997). Shortwave and longwave enhancements in the rapid radiative transfer model. In Proc. 7th Atmospheric Radiation Measurement (ARM) Science Team Meeting, US Department of Energy, CONF-9603149.
- 27. Moussiopoulos, N., Douros, I., Tsegas, G., Kleanthous, S., & Chourdakis, E. (2012). An air quality management system for policy support in Cyprus. Advances in Meteorology, Volume 2012, Article ID 959280.

- 28. *Nagy A.* (2010) A WRF-modell alkalmazása mezo-gamma skálájú folyamatok modellezésére (MSc. diplomamunka).
- Pleim, J. E. (2007). A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing, *J. Appl. Meteorol. Clim.*, 46, 1383–1395.
- Raes, F., Dingenen, R. V., Vignati, E., Wilson, J., Putaud, J. P., Seinfeld, J. H., & Adams, P. (2000). Formation and cycling of aerosols in the global troposphere. Atmospheric Environment, 34(25), 4215–4240.
- Schatzmann, M., Bächlin, W., Emeis, S., Kühlwein, J., Leitl, B., Müller, W. J., ... & Schlünzen, H. (2006). Development and validation of tools for the implementation of european air quality policy in Germany (Project VALIUM). Atmospheric Chemistry and Physics, 6(10), 3077–3083.
- 32. Schlünzen, K. H. (1997). On the validation of high-resolution atmospheric mesoscale models. Journal of wind engineering and industrial aerodynamics, 67, 479–492.
- 33. Schlünzen, K. H., & Krell, U. (1994). Mean and local transport in air. In *Circulation and contaminant fluxes in the North Sea* (pp. 317–344). Springer Berlin Heidelberg.
- 34. *Schrödner, R., Tilgner, A., Wolke, R., & Herrmann, H.* (2014). Modeling the multiphase processing of an urban and a rural air mass with COSMO–MUSCAT. *Urban Climate*.
- 35. Seinfeld, J. H., Andino, J. M., Bowman, F. M., Forstner, H. J., & Pandis, S. (1994). Tropospheric chemistry. Advances in Chemical Engineering, 19, 325–407.
- Shalaby, A., Zakey, A. S., Tawfik, A. B., Solmon, F., Giorgi, F., Stordal, F., ... & Steiner, A. L. (2012). Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geoscientific Model Development, 5(3), 741– 760.
- 37. Stull, R. B. (1988). An introduction to boundary layer meteorology (Vol. 13). Springer.
- Telford, P. J., Abraham, N. L., Archibald, A. T., Braesicke, P., Dalvi, M., Morgenstern, O., ... & Pyle, J. A. (2012). Implementation of the Fast-JX Photolysis scheme into the UKCA component of the MetUM chemistry climate model. Geoscientific Model Development Discussions, 5, 3217–3260.

- 39. *Thomas, G. E., & Stamnes, K.* (2002). Radiative transfer in the atmosphere and ocean. Cambridge University Press.
- Tie, X., Madronich, S., Li, G., Ying, Z., Zhang, R., Garcia, A. R., ... & Liu, Y. (2007). Characterizations of chemical oxidants in Mexico City: A regional chemical dynamical model (WRF-Chem) study. *Atmospheric Environment*, 41(9), 1989–2008.
- Tuccella, P., Curci, G., Visconti, G., Bessagnet, B., Menut, L., & Park, R. J. (2012). Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. Journal of Geophysical Research: Atmospheres (1984–2012), 117(D3).
- 42. Tulet, P., Crassier, V., Cousin, F., Suhre, K., & Rosset, R. (2005). ORILAM, a three-moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso-NH-C model and validation on the Escompte campaign. *Journal of Geophysical Research: Atmospheres (1984–2012)*, 110(D18).
- 43. Vogel, B., Vogel, H., Bäumer, D., Bangert, M., Lundgren, K., Rinke, R., & Stanelle, T. (2009). The comprehensive model system COSMO-ART–Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmospheric Chemistry and Physics, 9(22), 8661–8680.
- Wang, X., Liang, X. Z., Jiang, W., Tao, Z., Wang, J. X., Liu, H., ... & Peckham, S. E. (2010). WRF-Chem simulation of East Asian air quality: Sensitivity to temporal and vertical emissions distributions. *Atmospheric Environment*, 44(5), 660–669.
- 45. Wang, W., Bruyère, C., Duda, M., Dudhia, J., Gill, D., Lin, H. C., ... & Mandel, J. (2014). ARW version 3 Modeling System User's Guide. Mesoscale & Miscroscale Meteorology Division. National Center for Atmospheric Research, http://www2.mmm.ucar.edu/ wrf/users/docs/user_guide_V3/ARWUsersGuideV3.pdf.
- 46. Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., ... & Kang, D. (2012). WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results. *Geoscientific Model Development*, 5(2), 299–312.
- Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., ... & Worsnop, D. R. (2007). Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. *Geophysical Research Letters*, 34(13).

 Zhang, Y. (2011). On-Line Coupled Meteorology and Chemistry Models in the US. In Integrated Systems of Meso-Meteorological and Chemical Transport Models (pp. 15–39). Springer Berlin Heidelberg.