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Regional climate model (RCM) simulations are being increasingly used for climate
change impact assessments, but their application is challenging due to considerable
biases inherited from global climate model (GCM) simulations and generated from
dynamical downscaling processes. This study assesses the biases in NARCliM
(NSW and ACT regional climate modelling) simulations and quantifies the conse-
quence of the climate biases in the downstream assessment of climate change
impact on wheat crop system, using the Agricultural Production System sIMulator
(APSIM). Results showed that post-processing bias-corrected temperature and rain-
fall data from NARCliM had small annual mean biases but large biases in the crop
growing season (CGS). During the CGS, the mean bias error of rainfall was gener-
ally positive for rainfall probability and negative for intensity, which subsequently
resulted in APSIM simulating negative biases for runoff and deep drainage and
positive bias in soil evaporation. Bias in soil water balance and water availability
resulted in less plant transpiration and less N uptake, ultimately, leading to large
negative biases in crop yields. A simple bias correction of the simulated crop yield
driven by RCMs could result in a largely consistent distribution with those gener-
ated with APSIM simulations forced by observed climate. Our results showed that
RCM simulation biases could confound with the climate change signal and pro-
duced an unreliable estimate of the effects of the changes in climate and farm man-
agement variables on crop yields. The results suggested that RCM simulations with
the current bias correction on the RCM-simulated outputs applied on an annual
basis were inadequate for climate change assessments which involve biophysical
models. Our study highlights the need for improved RCM simulations by eliminat-
ing the systemic biases associated with rainfall characteristics, although suitable
post-processing bias correction on a seasonal or monthly basis may result in
improved RCM simulations for agricultural impacts of climate change.
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1 | INTRODUCTION

The assessment of climate change impacts on crop produc-
tivity often involves evaluating the outputs from crop

simulation models under various crop management practice
as well as different climate scenarios (Ruiz-Ramos and Mín-
guez, 2010; Vanuytrecht et al., 2014; Anwar et al., 2015;
Donatelli et al., 2015; Wiebe et al., 2015; Wang et al.,
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2017). Biophysical-based models represent the physiological
processes of crop development as a response to climate and
environmental variables. They are able to simulate daily
interactions with the climate, atmospheric CO2 concentration
([CO2]), soils and management practice that determine crop
growth and production. Many agricultural models require
input data that describes the environmental conditions at
high spatial and temporal resolution (Ruiz-Ramos et al.,
2016; Cammarano et al., 2017). Information about future cli-
mate conditions often comes from atmosphere–ocean global
climate models (GCMs), which attempt to represent the full
global climate system and simulate the response of the sys-
tem to assumed scenarios for emissions of greenhouse gases
and aerosols onto the atmosphere. However, the use of pro-
jected climate data from GCMs to drive crop models is chal-
lenging as the GCM grid size is much larger than that
required for crop modelling. Regional/local-scale detail must
be added through spatial downscaling (Ramarohetra
et al., 2015).

Dynamical downscaling by regional climate models
(RCMs) is often applied to bridge the gap between coarse-
resolution GCM data and high-resolution climate data that
can be used to drive biophysical models at a regional or site-
specific scale (Macadam et al., 2016). RCMs explicitly
account for many physical processes such as orographic fea-
tures, coastal boundaries and spatially more detailed depic-
tions of gradients within the atmosphere than GCMs (Fowler
et al., 2007; Yin et al., 2011). However, RCMs inherit biases
from GCMs and generate biases from dynamical downscal-
ing processes, which are referred for any discrepancy of
interest between a model output characteristic and the
“truth” (Ehret et al., 2012). The biases in RCM simulations
are themselves an additional source of uncertainty for down-
stream crop modelling. For example, when Pascal et al.
(2011) applied different RCMs outputs to drive the SARRA-
H crop model in Senegal over the 1990–2000 period, they
found large differences in the simulated wheat yields
depending on the RCM used and that a change in the physi-
cal parameterizations of a single RCM can lead to a large
dispersion in crop yield simulations. Moreover, Ramarohetra
et al. (2015) showed that the bias in the simulated crop yield
strongly depends on the choices in the RCM setup, the
choice of the land surface model being of primary impor-
tance in their study. Glotter et al. (2014) found that although
the RCMs correct some GCM biases related to fine-scale
geographic features, the use of a RCM cannot compensate
for broad-scale systematic errors that dominate the errors for
simulated maize yields when using two RCMs and the
DSSAT-CERES-maize crop model over the United States.
These large biases may seriously overestimate or underesti-
mate simulated changes. Therefore, for the assessment of cli-
mate effects on crop yield, bias correction of climate
variables or crop yield is a necessary procedure in the appli-
cation of the RCM output as well as the output from

statistical downscaling methods (Bakker et al., 2014; Yang
et al., 2014).

With the growing interest in regional climate projections,
the NSW Office of Environment and Heritage in conjunction
with the University of New South Wales and other partners
developed the NSW and ACT regional climate modelling
(NARCliM) project (Evans et al., 2014) that resulted in
12 RCMs available for three 20-year time slices (1990–2009
for baseline, 2020–2039 for 2030s and 2060–2070 for
2070s). The NARCliM RCM simulations of southeast
Australia had a horizontal resolution of ~10 km and captured
the spatial pattern of temperature and rainfall better than the
driving GCMs (Olson et al., 2016b). However, overall, the
RCMs tended to have cold and wet bias when compared to
climate observations. Furthermore, comparisons between
NARCliM RCM simulations driven by re-analysis data and
gauge or AWAP (Australian Water Availability Project)
observations suggested that the RCMs used by NARCliM
did not agree perfectly with observed rainfall and did not
produce the spatial distribution of the observed rainfall cor-
rectly (Manage et al., 2016). Evans et al. (2017) applied a
quantile mapping bias correction to the climate model out-
puts, based on theoretical distribution functions, and found
the bias correction was successful in removing a large pro-
portion of the bias in extreme rainfall, but unsuccessful in
correcting biases in the length of maximum wet and dry
spells. The post bias corrected NARCliM simulations have
become available and have been widely used in climate
change impact assessments in eastern Australia (Ji et al.,
2015; Olson et al., 2016a; Fita et al., 2017). For example,
Yang et al. (2016a) applied the NARCliM outputs for asses-
sing climate change impacts on water erosion across NSW
and found rainfall erosivity and hillslope erosion risk were
projected to increase by approximately 7 and 19% in 2030s
and 2070s over the baseline, respectively. Ji et al. (2018)
reported that the frequency of suitable snowmaking condi-
tions for the Australian Alps in both 2030s and 2070s was
substantially decreased compared to the baseline
(1990–2009). However, these studies often simply compared
modelled outputs derived from the climate of future periods
with the baseline. The assessment of percentage change can
be particularly problematic as the biases in RCM simulations
can alter the magnitude of climate change impacts.

As agricultural crops are sensitive to climate and envi-
ronmental variations (Lobell and Burke, 2010), agricultural
models are built to represent the biophysical processes that
require realistic climate data as inputs. It is therefore crucial
to quantify the errors inevitably propagated by downscaling
techniques through combined climate-crop modelling. The
NARCliM projections are an outstanding tool for investigat-
ing the effect of using RCMs on simulated yields in eastern
Australia, one of the most vulnerable areas to climate
change. However, to our knowledge, very few studies have
addressed the response of crop simulations to errors and
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uncertainties in the NARCliM data set. In this study, we
therefore used NARCliM simulations to drive a crop model
and assessed the simulated attributes of a wheat cropping
system compared to the simulations driven by historical
observed climate. The specific objectives were (a) to assess
the biases in NARCliM simulations related crop growth
stages, (b) to determine the effects of climate biases on crop
simulation modelling outputs, (c) to quantify the conse-
quence of climate biases on climate change impact assess-
ment and (d) to apply a simple bias correction method to the
outputs of the biophysical model to reduce the uncertainty of
the climate change impact assessment. The underlying
hypothesis is that if the climate variables simulated by
RCMs were realistic and perfectly matched the observed cli-
mate, the outputs of a biophysical model forced by the
observed and RCMs projected climate should be identical.

2 | MATERIAL AND METHODS

2.1 | Study domain

The domain of this study is the Murray-Riverina cropping
(MRC) region, southern New South Wales (Figure 1),
Australia, covering an area of 125,551 km2. The region is
characterized by a semi-arid climate with minimum tempera-
ture of 9.3 �C, maximum temperature of 22.0 �C and long-
term annual rainfall of 495 mm. A total of 370 historical
observed weather sites in the region and 56 soil types regis-
tered in APSoil (https://www.apsim.info/Products/APSoil.
aspx) are located for the region. The most frequently occur-
ring soil textures from the region were sandy clay and, sandy
loam above a clay layer, while the soil types range from
Sodosols to Kandosols (Isbell, 2016). The soil type nearest
to the respective climate site was used to run the crop model.

2.2 | Climate data

The observed climate variables (daily minimum temperature,
maximum temperature, rainfall and solar radiation) in
370 sites for the 20-year NARCliM baseline period

(1990–2009) were downloaded from the SILO-patched point
data set (Jeffrey et al., 2001).

The remaining climate data for this study were derived
from the NARCliM ensemble of regional climate projec-
tions. This provided detailed regional climate projections for
southeast Australia by downscaling outputs from a selection
of the CMIP3 GCMs. Data from a subsequent generation of
GCMs, the CMIP5 GCMs, has since become available, but
the NARCliM projections remain the most detailed compre-
hensive climate projections for NSW. In NARCliM, four
GCMs, namely CCCMA3.1, CSIRO-MK3.0, ECHAM5 and
MIROC3.2 (abbreviated as CC, CS, EC and MI, respec-
tively) were selected from the Coupled Model Intercompari-
son Project phase 3 (CMIP3) ensemble. GCM simulations of
the SRES A2 emission scenario (business as usual scenario,
in terms of the energy imbalance of the climate system, simi-
lar to currently used representative concentration pathway
[RCP] 8.5) were used (Table 1). The selection of the GCMs
was based on model performance over Australia, indepen-
dence of errors, and to span the full range of potential future
climates over southeastern Australia (Evans et al., 2014).
The selected four GCMs were used to drive three structurally
different RCM configurations to form a 12-member GCM-
RCM ensemble, hereafter denoted as 12 RCM simulations
(Table 1). The three RCM configurations (referred to as R1,
R2 and R3 hereafter) were variants of the WRF V3.3 model
(Skamarock et al., 2005) with three different physics scheme
combinations (Table 1). As described in the RCM selection
process (Evans et al., 2014), WRF is a modelling framework
within which one builds models. By choosing different
physics scheme combinations within WRF different RCMs,
possessing different error characteristics and even climate
sensitivity can create different RCMs that enable to sample
uncertainties associated with dynamical downscaling. The
three RCMs were specifically selected from 36 combinations
considering eight typical east coast low events (which is a
major climate driver for southeast Australia). Performance of
RCMs and independence of RCMs were considered in the
selection. These three RCMs performed well in terms of
their ability to reproduce observations of the east coast low
events and were somewhat independent in the sense that

FIGURE 1 The baseline observed annual rainfall (1990–2009) and the distribution of the 370 observed climate sites in the MRC region [Colour figure can
be viewed at wileyonlinelibrary.com]
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biases between the simulations and observations differed
between the three RCMs (Evans et al., 2012; Evans et al.,
2014; Ji et al., 2014).

For each of the 370 study sites, climate data for the three
20-year NARCliM time slices (1990–2009, 2030–2039 and
2060–2079) were extracted from the nearest grid point of the
bias-corrected 10 km NARCliM simulations. This post-
processing bias correction used a quantile matching tech-
nique as described in Piani et al. (2010) that allowed correc-
tion of the full distribution of daily precipitation, maximum
and minimum temperatures. First, Gamma distributions were
fitted to the observed and modelled daily precipitation time
series, and Gaussian distributions to the observed and mod-
elled daily maximum and minimum temperature time series.
Corrections were then applied to allow the fitted distribu-
tions of daily RCM output to match the fitted distributions
of daily observations. The AWAP observations (Jones et al.,
2009) for period 1990–2009 were used to calculate the cor-
rections. These corrections were assumed to be independent
of future climate change and the same corrections were also
applied respectively to the future precipitation and tempera-
ture values. Due to unavailable radiation data in the AWAP
data set, the post-processing bias correction was not applied
to radiation.

2.3 | Agricultural biophysical modelling

2.3.1 | The APSIM model

Agricultural Production Systems sIMulator (APSIM) is a
biophysical model that was designed to simulate agricultural
systems at a field scale and the model has been widely vali-
dated for different environments worldwide including the
study region (Keating et al., 2003; Holzworth et al., 2014;
O’Leary et al., 2016). In this study, APSIM version 7.7
under various farming treatments were forced by observed

climate (SILO) data and NARCliM data (i.e., 12 RCM simu-
lations). APSIM considers the response of the cropping sys-
tem to soil properties (mainly soil water and nitrogen),
climate (radiation, temperature, rainfall and [CO2]) and man-
agement practices, including cultivar selection, sowing date
(SD) decision, irrigation options, nitrogen fertilization, till-
age operations and residue management. APSIM simulated
the plant response to changing [CO2] via effects on plant
radiation use efficiency, transpiration efficiency and critical
leaf nitrogen concentration. As the responses in these param-
eters are functions of [CO2], we calculated [CO2] for each
year using the empirical function of Yang et al.
(2014, eq. 2),

CO2½ �y=2641+
0:098139×y−211:71

3:5566×y−0:37996−0:19123
, ð1Þ

where y is the calendar year from 1900 to 2100
(i.e., y = 1900, 1901, …, 2100).

The details of APSIM settings and key parameters imple-
mented are described in Liu et al. (2017).

2.3.2 | APSIM set up

To test the responses of wheat cropping system to uncer-
tainties in climate variables under different agronomical
managements, we ran APSIM under two contrasting crop
residue incorporations (residue removal with no tillage,
denoted as RI0%, and 100% residue incorporations with
three tillages, denoted as RI100%) and two N-applications
(55 and 165 kg/ha, denoted as N55 and N165, respectively).
The combination of the residue incorporation and N-
application resulted in four treatments, that is, RI0N55,
RI0N165, RI100N55 and RI100N165. This would allow
simulating the interaction of cropping systems between cli-
mate and farming management activities.

TABLE 1 The 12 RCM configurations from the selected four GCMs and three ensemble members of WRF v3.3 model with different physics scheme
combinations. The GCMs projected changes in rainfall and temperature were based on the far future period (2060–2079) relative to the baseline period
(1990–2009) for NARCliM land domain

RCM-GCM
code

GCMs WRF V3.3 model

GCM name

Projected change
NARCliM
ensemble
member

Planetary boundary
layer physics/surface
layer physics

Cumulus
physics Micro-physics

Short/
longwave
radiation
physicsRainfall Temperature

CC-R1 R1 MYJ/Eta similarity KF WDM 5 class Dudhia/RRTM

CC-R2 CCCMA3.1 Wetter Hotter R2 MYJ/Eta similarity BMJ WDM 5 class Dudhia/RRTM

CC-R3 R3 YSU/MM5 similarity KF WDM 5 class CAM/CAM

CS-R1 R1 MYJ/Eta similarity KF WDM 5 class Dudhia/RRTM

CS-R2 CSIRO-MK3.0 Drier Warmer R2 MYJ/Eta similarity BMJ WDM 5 class Dudhia/RRTM

CS-R3 R3 YSU/MM5 similarity KF WDM 5 class CAM/CAM

EC-R1 R1 MYJ/Eta similarity KF WDM 5 class Dudhia/RRTM

EC-R2 ECHAM5 Drier Hotter R2 MYJ/Eta similarity BMJ WDM 5 class Dudhia/RRTM

EC-R3 R3 YSU/MM5 similarity KF WDM 5 class CAM/CAM

MI-R1 R1 MYJ/Eta similarity KF WDM 5 class Dudhia/RRTM

MI-R2 MIROC3.2 Wetter Warmer R2 MYJ/Eta similarity BMJ WDM 5 class Dudhia/RRTM

MI-R3 R3 YSU/MM5 similarity KF WDM 5 class CAM/CAM
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The sowing date (SD) of the crop was set automatically
using a “sowing rule” designed to represent common farm
management practices. With large spatial variation in soil
and climate across the MRC region, we needed to develop a
suitably flexible sowing rule. To set a sowing rule suited to
all soils and rainfall conditions across the entire region, we
considered sowing as a function of soil water (SW) content,
plant available water capacity (PAWC), recent rainfall and
day of year in the season. We used the conditions given in
Equation (2a) to determine SD occurring the first day when
this condition was met,

CR4≥ CRo+að Þ PAWC
PAWC+SW

� �3

−a, ð2aÞ

where CR0 is the amount of cumulative rainfall in previous
4 days at SW =0 and varied with day of year (d) and a is
also a function of d, which are calculated by

CR0=
4320
d−36

, a=
600:04
d−37:13

: ð2bÞ

The constants were determined so that sowing on dry
soil (SW =0) required a total of 58 and 30 mm of CR0 on d
= 111 and 181 for the starting and ending of sowing widow
(April 21 to June 30), whereas dry sowing (no recent rain)
can be performed when SW = PAWC. Here, we used this
innovative approach to determine SD based on soil water
content and cumulative rainfall and crops sown in dry soils
when a large amount of rainfall occurs in the most recent
days or sown in wet soils requiring no rainfall or small
amount of recent rainfall, hence the sowing rule suits a wide
range of conditions.

To assess the application of nitrogen across the region
and climate effects on the cropping system without carry
over of cumulative effects, we reset the soil water and nitro-
gen to their respective initial level on February 1 in
each year.

2.4 | Biases and secondary bias correction

We defined the NARCliM climate biases as the difference
between the average values (XM) in the NARCliM data set
and their respectively observed values (XO). Similarly, the
biases in APSIM-simulated outputs are the difference
between the APSIM-simulated outputs forced by RCMs
(XM) and those forced by observed climate (XO). We defined
mean bias error (MBE) as the difference in the mean over
the 20-year period either in absolute terms (e.g., temperature
in �C, run off in mm) or in percentage (e.g., rainfall, %)
using the formula of

MBE=XM−XO or MBE %ð Þ=100×
XM−XO

XO
, ð3Þ

respectively, where XM is the 20-year mean of NARCliM
climate variables or the APSIM-simulated outputs forced by
NARCliM climate and XO is the 20-year mean of observed

climate variables or the APSIM-simulated outputs forced by
observations.

To ensure reliable analysis of the impact and/or the con-
tribution of changes in climate variables or management
practices, we need not only to assess the biases in climate
variables, but also to remove biases in APSIM-simulated
outputs associated with the climate biases. This bias correc-
tion of simulated outputs is termed as secondary bias correc-
tion (SBC; Yang et al., 2016b) because it is applied after the
“primary” bias correction of the climate model outputs. We
used the method proposed by Haerter et al. (2011) that can
correct both mean bias and bias in the variation of annual
values as

Y=XO,bl+
SO,bl
SM,bl

XM−XM,bl
� �

, ð4Þ

where Y is the bias corrected value; X is APSIM-simulated
outputs; the subscript O or M denotes, respectively, that
driven by observed climate or RCM-simulated climate with
bl for the baseline period 1990–2009; S is the standard devi-
ation over the 20-year data and X is the 20-year mean. Here-
after, the data before SBC are denoted as NonSBC and after
SBC as SBCMnSD. Although Equation (4) can reduce/cor-
rect some of the biases of the mean and interannual varia-
tion, it is obvious that the function is a linear that has been
applied for correction of simulated crop yield resulted from
a nonlinear process of biophysical models. Therefore, it is
anticipated that such correction would work better for out-
puts resulted from less nonlinear processes or small magni-
tude of biases. In other words, further careful assessment or
caution is needed for interpretation of the results involved
in SBC.

In this study, the RCM bias is interchangeable with the
term of climate bias as the bias in RCMs includes the bias
inherited from GCMs.

3 | RESULTS

3.1 | RCM biases

The bias correction applied to the NARCliM data does not
account for different biases in different seasons of the year.
To examine residual biases for seasons relevant to cropping,
we calculated biases of climate variables for each RCM sim-
ulation by comparing the NARCliM-simulated climate with
the SILO observation within cropping periods (pre-sowing
(PS); sowing to flowering (STF); flowering to harvesting
[FTH]) as well as annually in the baseline period
(1990–2009).

The distributions across the 370 study sites of MBEs in
radiation, temperature and rainfall and their intra-standard
deviation (intra-SD) of variations in daily sequences as well
as rainfall probability and intensity for annual and three
cropping periods (PS, STF and FTH) were shown in
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Figures 2–4. Small annual-based biases in both magnitude
and the variation across the 370 sites were found for all
RCMs for all variables, except for radiation, for which biases
were larger as this variable was not post-processing bias cor-
rected due to radiation data unavailable in AWAP data set
that were used for the post-processing bias correction of the
NARCliM simulations (Figure 2). In addition, the annual-
based biases in temperatures and rainfall probability were
much small and consistent with RCMs, but that in intra-SD
of temperature, rainfall and rain intensity were also quite
large with systematically lower values compared to observa-
tions for all RCMs (Figures 3 and 4).

In the three cropping periods (PS, STF and FTH), almost
all the RCMs over-estimated radiation (Figure 2a). Radiation
MBEs exhibited an increased trend from PS to FTH. Biases
for R3 simulations were larger than those for R1 and R2
simulations. However, the intra-SD of bias in radiation for
FTH period had negative MBEs, largely positive before
flowering (PS and STF) and annual (Figure 2b). As intra-SD
measures the variability of daily sequences, a negative or
positive intra-SD bias means the daily sequence of RCMs
exhibits a larger or smaller daily variation than observed
daily sequences, respectively. This indicates that the daily
sequences of the NARCliM radiation were mismatched to
the observations. It is worth noting, again, that the NAR-
CliM radiation was not post-processing bias-corrected, and a
large proportion of radiation in SILO was also calculated,
rather than actually observed.

Unlike the consistent trending in radiation, the tempera-
ture MBE varied considerably between RCM simulations
and crop growing periods (Figure 3). The most distinct fea-
ture was that the bias had a reciprocal low–high pattern
between periods, that is, one higher value accompanied with
another lower. For example, some RCM simulations (CC-,
CS- and EC-RCM) produced higher minimum temperature
(Tmin) in PS period, but lower in another two phenological
stages (STF and FTH) (Figure 3c). In comparison between
temperature variables, RCMs gave a higher maximum tem-
perature (Tmax) in one period and often showed lower Tmin

for the same period. For example, CC-R1 had a median
MBE of +0.7 �C for Tmax in the period of FTH (Figure 3a),
but −0.5 �C for Tmin in that period (Figure 3c). The magni-
tude of MBEs was not the same for Tmin and Tmax, the MBEs
for daily mean temperature (Tmean) were still large and main-
tained a similar pattern to Tmax or Tmin. Generally, more neg-
ative Tmean MBEs for STF period were found for CC-, CS-
and EC-RCMs, but more positive Tmean MBEs were found
by MI-RCMs for this important phenological period
(Figure 3e). This may lead to biases in the phenological
development as temperature is primary factor controlling
crop phenology. Higher maximum temperatures may also
lead to more events of extreme temperatures that can be
extremely harmful for crops if they exceed certain values.
The intra-SD MBEs for temperatures varied considerably,
suggesting that the post-processing bias corrected NARCliM

FIGURE 2 MBE in NARCliM-simulated radiation and intra-SD for the PS, STF, FTH and annually. The box plots show the 5, 25, 50, 75, and
95 percentiles, calculated from the 370 sites [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 MBE in NARCliM-simulated maximum, minimum and mean temperatures and their intra-SD for the PS, STF, FTH and annually. The GCM-
based R1, R2 and R3 are in red, green and blue colour, respectively. The box plots show the 5, 25, 50, 75 and 95 percentiles, calculated from the 370 sites
[Colour figure can be viewed at wileyonlinelibrary.com]
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data do not accurately reproduce the seasonal cycle in tem-
perature (Figure 3b,d,f ).

Rainfall biases also varied considerably across RCMs,
which can be categorized in three distinct groups. First, the
rainfall simulated by CC-RCMs had smaller range of biases
for all periods than other RCMs, showing a narrow MBE
interquartile from −10 to +30% (Figure 4a). Although the
rainfall MBEs for the three CC-RCM simulations were still
quite large, these RCMs showed better performance than
these RCMs driven by other GCMs. The second group of
RCMs (CS-RCMs and EC-RCMs) produced significantly
higher rainfall in the PS period, but lower rainfall for the
crop growing periods (STF and FTH), exhibiting a wide

MBE interquartile from −40 to +50% across RCMs. The
third group of RCMs (MI-RCMs) gave over 90% of sites
with positive MBEs in PS period and negative MBEs in STF
period. Generally, a similar seasonal bias pattern, that is,
positive MBE in one period companied with a negative in
another period, was found in rainfall bias, suggesting that
the post-processing bias corrected NARCliM data do not
accurately reproduce the seasonal cycle in rainfall. The intra-
SD MBE for rainfall in the growing season was mostly neg-
ative, suggesting smaller variations in daily rain events than
observations (Figure 4b).

In addition to analysis of rainfall MBE, we further
explored the rain-event characteristics. Figure 4c,d exhibited

FIGURE 4 MBE in NARCliM-simulated rainfall and rainfall intra-SD, and MBE in rainfall probability and rainfall intensity for the PS, STF, FTH and
annually. The box plots show the 5, 25, 50, 75 and 95 percentiles, calculated from the 370 sites [Colour figure can be viewed at wileyonlinelibrary.com]

LIU ET AL. 431

http://wileyonlinelibrary.com


an obvious contrasting pattern between rainfall probability
(i.e., unconditional probability of a rain-day) and rainfall
intensity, showing that the bias-corrected RCM outputs
tended to produce a higher rainfall probability (Figure 4c)
and lower rainfall intensity than observations (Figure 4d).
This indicated that all RCMs simulated more frequent but
less intensive rainfall when compared with SILO data.

Figure 5 shows the coherent relationship between three
rainfall characteristics (intensity, probability and amount)
MBEs because the three MBEs for each site are displayed
together. For convenience, we arbitrarily considered the sites
with all three rainfall characteristic MBEs are within the
range from −10 to +10% as a low bias sites, showing in the
shaded area (Figure 5). The results show several points
worth noting. First, the performance of RCMs driven by dif-
ferent GCMs was different as CC-RCMs simulations exhib-
ited 58–74% of sites with substantial wet biases (rainfall
MBE ≥ +10%) (Figure 5a,c), but RCMs driven by other
GCMs produced substantial dry bias (rainfall MBE ≤
−10%) for 77–95% of sites. The wet-bias RCMs (CC-
RCMs) produced 11–18% sites with relative low bias, while
none of the dry-bias RCMs (CS-, EC- and MI-RCMs) pro-
duced more than 10% of sites with low bias. Second, there
was obviously a negative relationship between rainfall inten-
sity MBE and probability MBE, that is, increasing in rainfall
probability bias is associated with decreasing rainfall inten-
sity bias. The relationship is largely well described by a lin-
ear relationship with a slope of −0.4 to −1.3 (% rainfall
probability MBE per % intensity MBE) and intercept of
−13.1 to −21.5 (% rainfall probability MBE) for negative
rainfall sites, but +5.2 to +23.3 5 (% rainfall probability
MBE) for positive rainfall bias. Third, the relatively small
rainfall bias sites were deposed in a diagonal strip across the
origin, while larger magnitudes of rainfall MBE had a paral-
lel distribution above the low bias strip for positive or below
for negative rainfall bias. These may suggest a systematic
bias pattern related to the rainfall characteristics. Further-
more, the largest proportion of MBEs was distributed in the
quadrant II (except for CS-R1 and CS-R2) representing these
sites with positive rainfall probability MBE and negative
intensity MBEs which were associated with either negative
rainfall MBE for the dry-bias RCMs (i.e., CS-, EC- and MI-
RCMs, Figure 5d,l) or positive rainfall MBE for the wet-bias
RCMs (i.e., CC-RCMs) (Figure 5a,c). The second largest
proportion of MBEs for the dry-bias RCMs was in the quad-
rant III where all sites had all negative MBEs for the three
rainfall characteristics, comparing with the second largest
proportion for the wet-bias RCMs (i.e., CC-RCMs) was in
quadrant I with all positive MBEs for the three rainfall char-
acteristics. The results indicated that RCMs tended to simu-
late smaller, but more frequent rain-events whether with
smaller or larger amount of rainfall in the crop growing
period, or smaller amount of rainfall associated with lower
intensity or fewer rain-events than observations for most

sites in the MRC region. It is clear that either type of rainfall
can reduce or alter the availability of soil water for crop
growth and downstream water in rivers, hence, likely pro-
duce different biophysical modelling outputs.

In addition, linear regression analysis on all data for each
RCM showed that the 89–93% rainfall probability MBE var-
iance was accounted for by the intensity MBE and growing
season rainfall MBE with their respective slopes ranged
from −1.1 to −1.3 and +0.9 to +1.1. We further summarized
the relationships of the rainfall characteristic MBEs over the
study area, that is, with the 370 sites, by the following
relationship:

MBEi=0:06**−0:65***MBEf +0:72***MBEp, R2 =0:96,

ð5Þ
where subscripts, i, f, p denoted rainfall intensity, rainfall
probability and growing season rainfall, respectively.

3.2 | Biases in APSIM-simulated parameters

3.2.1 | Biases in APSIM-simulated soil water and N uses
under farming management

We compared the biases in a wide range of APSIM-
simulated outputs through the difference between the outputs
forced by RCMs and those forced by observed climate
(SILO). Biases in APSIM-simulated soil water balance, crop
phenology and production are shown in Figures 6–8.
Figure 6a shows that more RCMs resulted in positive MBE
in soil water at sowing (SWS). However, the biases in runoff
(RO) (Figure 6b) and deep drainage (DD) (Figure 6c) were
negative at the majority of sites, except for DD for the three
CC-RCM simulations. The biases in soil water evaporation
(ES) were positive at almost all sites (Figure 6d). It is notice-
able that ES biases associating with R3 were consistent
higher than R1 or R2 (Figure 6d), reflecting the higher radia-
tion (Figure 2a) that was inputted into the biophysical model
and driven the energy-based soil evaporation processing.

In addition, across around 75% of 370 sites, biases in
plant transpiration (EP) were positive when APSIM simula-
tion were forced by the three CC-RCMs and negative for the
rest of nine RCMs (Figure 8a). These results were highly
correlated with the biases in the rainfall simulations. For
example, CC-RCMs that produced positive EP are the
RCMs that had positive rainfall biases, while the RCMs
driven by other GCMs resulted in negative EP MBE largely
due to their negative rainfall biases. Moreover, because plant
N uptake follows water uptake, the biases in APSIM-
simulated N-uses (NU) exhibited a similar pattern to EP
biases (Figure 8b).

Importantly, there was a clear interaction between the
biases and farming management practice. For example, the
crop residue incorporation (RI) considerably reduced the
range of the SWS bias, DD bias and plant transpiration bias
at RI0 (Figures 6a,c and 8a), but increased the magnitude of
the negative RO MBE in RI100. Similarly, a larger
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FIGURE 5 Relationship between rainfall intensity MBE, rainfall probability MBE and the amount MBE in crop growth period for the 370 sites in MRC
region of New South Wales, Australia. Grey shading represents where MBEs in all rainfall variables are less than 10% and the proportions of sites falling
within these areas are noted at the end of the black arrows. The proportion of sites with MBE greater than 10% for one or more rainfall variables is shown for
each quadrant, followed by the proportion showing dry bias (d) and/or wet bias (w) in the brackets. Linear least squared regression was applied to the sites
with the rainfall MBE ≤ −10%, −10 to <+10% and ≥+10%. All data were fitted to the rainfall probability MBE (Y, %) as a linear function of rainfall
intensity MBE (X, %) and the amount of rainfall MBE (Z, %). The coefficients with *, ** and *** are significant at p < .05, p < .01 and p < .001,
respectively, otherwise, not significant [Colour figure can be viewed at wileyonlinelibrary.com]
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magnitude of biases in EP and NU were simulated at a high
N-application than lower N-application (Figure 8a,b). The
study reveals that farm management practice may interact
with the climate biases and consequently affect biases in bio-
physical modelled outputs.

3.2.2 | Biases in APSIM-simulated plant development and
crop growth

For MI-RCMs, approximately 75% of sites had a SD later
than that resulting from observed climate, while the RCMs
driven by other GCMs exhibited more negative SD biases
(Figure 7a). The number of days from STF and crop duration

(CD) simulated by APSIM forced by CC-, CS- and EC-RCMs
were generally longer (positive MBE) at most sites and those
forced by MI-RCMs were shorter (negative MBE), relative to
APSIM simulations forced by observed climate (Figure 7b,c).
It is not surprising that the differences in crop phenological
biases were consistent with the biases in NARCliM projected
temperature, that is, the MI-RCMs that produced a faster
development (negative positive DTF and CD MBE)
(Figure 7b,d) in crop development were the RCMs that had
positive Tmean biases in this phenological period (Figure 3e).

Similarly, the three CC-RCMs showed positive bio-
mass bias in over 75% sites, largely resulted from the

FIGURE 6 MBE in APSIM-simulated soil water balance outputs under the four management treatments (RI0N55: 0% residue incorporation by 55 kgN/ha;
RI0N165: 0% residue incorporation by 165 kgN/ha; RI100N55: 100% residue incorporation by 55 kgN/ha; RI100N165: 100% residue incorporation by
165 kgN/ha). The box plots show the 5, 25, 50, 75 and 95 percentiles, calculated from the 370 sites [Colour figure can be viewed at wileyonlinelibrary.com]
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positive rainfall MBEs. However, the large positive bio-
mass biases by CC-RCMs (Figure 8c) are not apparent for
wheat yield (Figure 8d), due to the difference in the rain-
fall biases from the positive rainfall biases in STF period
to a negative rainfall biases in FTH period produced by
these RCMs (Figure 4a). This is also because wheat bio-
mass gain largely occurs before pre-flowering. The nine
RCMs driven by CS, EC and MI exhibited negative biases
in both wheat biomass and wheat yield in most sites, cor-
responding to the same pattern of the biases in rainfall and
ultimately plant transpiration (Figures 4a and 8a). In addi-
tion, for these dry RCM simulations (CS-, EC- and MI-

RCMs), the high rate of N application with residue
removal produced the largest interquartile range for both
wheat biomass and yield biases, but that with the 100% RI
gave a relative small range (Figure 8c,d), suggesting that
the relative importance of climate biases in APSIM outputs
can change with the simulated management.

3.3 | Spatial distribution of wheat yield biases affected
by farm management practice

In the baseline period (1990–2009), APSIM-simulated wheat
yield with observed weather data in the four treatments
(RI0N55, RI0N165, RI100N55 and RI100N165) increased

FIGURE 7 MBE in APSIM-simulated wheat phenology outputs under the four management treatments (RI0N55: 0% residue incorporation by 55 kgN/ha;
RI0N165: 0% residue incorporation by 165 kgN/ha; RI100N55: 100% residue incorporation by 55 kgN/ha; RI100N165: 100% residue incorporation by
165 kgN/ha). The box plots show the 5, 25, 50, 75 and 95 percentiles, calculated from the 370 sites [Colour figure can be viewed at wileyonlinelibrary.com]
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from west to east, corresponding to rainfall gradient from
low to high (Figure 9). The average yield ranged from 2.6 t/
ha for RI0N55 to 3.7 t/ha for RI0N165, closely representing
the recent wheat yield in this region (Wang et al., 2015).

The spatial distribution of the APSIM-simulated yield
MBEs exhibited a number of distinct patterns related to dif-
ferent RCMs and farming managements. First, there were
large variations between RCMs driven by different GCMs.
The smallest yield MBEs were found in the three CC-RCMs
and largest yield MBEs were observed in MI-RCMs driven
wheat yields. Taking RI0N55 for example, the magnitudes
of wheat yield MBE showed an increased order of CC-, CS-,

EC- and MI-RCMs with the range of mean yield MBEs of
−0.6 to 2.2%, −16.5 to −4.8%, −17.4 to −14% and −24.1 to
−21.6%, respectively (Figure 10). Second, MBEs had a clear
spatial pattern from relatively large negative MBE in the
west region to relatively large positive MBE in the east
region. Third, the magnitude of yield MBE in the high N
treatment was larger than in the low-N treatment because
negative bias in soil water can restrict up-take of abundant
nitrogen (high N applied) available in the soils and because
in the low N treatment, N availability is much more restrict-
ing and governing than water availability and water variation
(from rainfall), hence increasing the consequence of rainfall

FIGURE 8 MBE in APSIM-simulated outputs of plant transpiration (a), N uses (b), wheat biomass (c) and wheat yield (d) under the four management
treatments (RI0N55: 0% residue incorporation by 55 kgN/ha; RI0N165: 0% residue incorporation by 165 kgN/ha; RI100N55: 100% residue incorporation by
55 kgN/ha; RI100N165: 100% residue incorporation by 165 kgN/ha). The box plots show the 5, 25, 50, 75 and 95 percentiles, calculated from the 370 sites
[Colour figure can be viewed at wileyonlinelibrary.com]
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biases on crop growth, again, suggesting that farm manage-
ment practice can interact with climate biases, hence enlarge
the wheat yield biases.

3.4 | Relationships between the RCMs biases and the
responding biases in biophysical modelled outputs

The relationships between the biases in NARCliM-simulated
climate and the biases in APSIM-simulated variables were
established by the analysis of least squared multiple regres-
sion (Table 2). Prior to the regression analysis, we calculated
the variance inflation factor (VIF; Doetterl et al., 2015) to
detect whether there is any statistical evidence of collinearity
among climate MBEs (i.e., MBER, MBET and MBEP for
MBE in radiation, temperature and rainfall, respectively) in
each of 370 sites. VIF is defined as the reciprocal of 1 – R2,
that is, VIPi=1= 1−R2

i

� �
(Stine, 1995), hence VIF varies

from 1 to +∞. The R2
i is the coefficient of determination

from the regression of the ith variable on the other variables.
If the ith variable cannot be explained by other variables at
all, that is, R2

i =0, VIPi = 1. If the ith variable can be
completely explained by other variables, that is, R2

i ! 1,
VIPi ! + ∞. The results showed that the highest VIF was
5.7 and the overall mean VIF was 1.4 across 370 sites, indi-
cating that these climate MBEs do not exhibit significant
collinearity as none of them was greater than the threshold
(10) for significant collinearity (Doetterl et al., 2015) (data
not shown).

The regression coefficients quantified the contributions
of the RCM biases to the biases in the biophysical modelled
outputs. The overall mean values of the coefficients and their
regression statistics (R2 and the standard error (SE) of esti-
mate) are also shown in Table 3. Generally, different MBE
of climate variables had different effects on the MBE in the
APSIM-simulated outputs due to the different functionalities
of climate variables implemented in the crop model. For

example, the biases in crop phenology (MBEDTF, MBEFTH

and MBECD) were significantly correlated with Tmean MBE
for 95–97% of 370 sites which contrasts to 24–66% of
370 sites for radiation and rainfall MBEs (Table 3). As tem-
perature is the primary factor driving crop phenology in
APSIM through cumulative thermal time, the resultant crop
phenology MBE from temperature MBE is not unexpected.
The results showed that per Celsius degree of Tmean MBE
led to wheat flowering moving forward by 15 days (−15
days of bias) (Table 2) which is similar to the results of cli-
mate change impact as reported by Anwar et al. (2015) who
found wheat flowering date advanced by 9–20 days per Cel-
sius degree increase in future temperature. Moreover, the
bias in SWS and SD were highly correlated with the biases
in PS temperature and rainfall (Table 2). However, biases in
DD and NU exhibited weak relationships to RCMs MBEs
(lower R2 of 0.44 and 0.50, respectively), because they did
not directly link to the climate inputs. Generally, for vari-
ables influencing complicated physical or biological pro-
cesses such as plant transpiration or crop growth, the biases
in APSIM-simulated outputs were highly related to all biases
of RCM-simulated variables (i.e., radiation, temperature and
rainfall), indicated by 56–87% significant coefficients
revealed for these variable (Table 2). The results confirmed
that the biases in climate variables impacted upon the biases
in APSIM-simulated outputs through the functionalities of
these climate variables in the biophysical model.

3.5 | Effect of secondary bias correction on the impact
of climate change on wheat yield

The distributions of RCM-driven NonSBC and SBCMnSD
yearly wheat yields for 1990–2009 of the 370 sites with four
management options are shown in Figure 11. Observation-
driven yields had two peaks of 0.6 and 5.8 t/ha, which repre-
sented the western low-yield sites and the eastern high-yield
sites, respectively (Figure 9). The distribution of CC-RCMs
driven wheat yield was relatively close to that of
observation-driven wheat yield, reflecting lower climate
MBE. The yield distributions of CS-RCMs, EC-RCMs and
MI-RCMs largely skewed low, hence forming much higher
density at the low-yield peak and much lower density at
high-yield peak than the observed PDF (Figure 11a). Apply-
ing the SBC resulted in yield distribution similar to
observation-driven yield PDF (Figure 11b). Similar results
will be reported for other crops including canola and lupin in
the same region and the same RCM simulations elsewhere
(Wang et al., unpublished).

We calculated the yield changes based on the average of
the 20-year yearly values. With the combination of 12 RCM
simulations, four treatments and two future periods for each
site, we quantified the effects of changes in climate vari-
ables, elevated CO2 concentrations and crop management
practice (RI and NU) on crop yield using a multiple linear
regression (see the caption of Figure 12 for the equation).

FIGURE 9 Historical mean annual wheat yields simulated by APSIM
forced by SILO observed climate data under the four management
treatments (0% residue incorporation by 55 kgN/ha; 0% residue
incorporation by 165 kgN/ha; 100% residue incorporation by 55 kgN/ha;
100% residue incorporation by 165 kgN/ha) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 10 Spatial distribution of MBE in mean annual wheat yields simulated by APSIM forced by NARCliM simulations (four GCMs downscaled by R1
and R3 RCMs) for the combined treatments of 0% residue incorporation and 100% residue incorporation with N-application of 55 and 165 kg/ha [Colour
figure can be viewed at wileyonlinelibrary.com]
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With this regression analysis, the contribution of specific cli-
mate factors to yield change can be quantified. Here we used
climate change and the yield change with and without SBC
(i.e., the data of SBCMnSD and NonSBC) to differentiate

the effectiveness of SBC. Figure 12 shows the wheat yield
change could be well described by the changes in radiation
(ΔR), mean temperature (ΔTmn), rainfall (ΔP) and CO2

(ΔCO2), and management practices, that is, incorporated

TABLE 2 The coefficients and statistics of the multiple linear least squared regression of biases in APSIM-simulated parameters as a function of radiation
MBE (MBER, %), temperature MBE (MBETmn, �C) and rainfall MBE (MBEP, %) in the formula of MBEAPSIM = a MBER + b MBETmn + c MBEP, where
MBEAPSIM are biases in APSIM-simulated parameters (e.g., SWS, RO, DD, ES, EP, NU, SD, DTF, FTH, CD, BM = biomass; Y = yield). The mean
coefficient and the standard deviation (±SD) are shown, followed by the percentage of sites with significant coefficient (p < .05) in brackets, where more than
two thirds of 370 sites (≥67%) with a significant coefficient are in bold. SE is the standard error of the estimate

APSIM variables Perioda
a
%−1

b
�C−1

c
%−1 R2 SE

MBESWS (days) PS 0.05 ± 0.33 (25) 10.00 ± 7.29 (79) 0.17 ± 0.36 (65) 0.60 ± 0.20 9.76 ± 4.70

MBESD (days) PS −0.09 ± 0.19 (51) −8.06 ± 3.43 (94) 0.12 ± 0.16 (80) 0.80 ± 0.18 3.74 ± 1.78

MBERO (mm) GS −0.09 ± 0.09 (84) −0.03 ± 6.02 (45) 0.11 ± 0.18 (83) 0.72 ± 0.18 1.74 ±1.87

MBEDD (mm) GS −0.12 ± 0.35 (33) −2.90 ± 31.90 (29) 0.84 ± 1.33 (55) 0.44 ± 0.26 11.03 ± 11.89

MBEES (mm) GS −0.01 ± 0.38 (34) −21.86 ± 17.31 (75) 0.53 ± 0.30 (82) 0.64 ± 0.14 11.75 ± 5.51

MBEEP (mm) GS 0.05 ± 0.66 (59) −35.26 ± 28.52 (78) 0.84 ± 0.70 (85) 0.73 ± 0.19 15.35 ± 6.57

MBENU (kg) GS 0.66 ± 0.67 (66) 21.97 ± 31.56 (46) −0.16 ± 0.46 (27) 0.50 ± 0.19 19.84 ± 8.38

MBEDTF (days) STF −0.01 ± 0.11 (52) −15.19 ± 7.30 (95) 0.06 ± 0.07 (66) 0.80 ± 0.17 2.35 ± 1.10

MBEFTH (days) FTH 0.01 ± 0.04 (58) −1.72 ± 0.78 (97) 0.00 ± 0.01 (24) 0.86 ±0.17 0.40 ± 0.30

MBECD (days) GS 0.02 ± 0.12 (58) −16.91 ± 7.18 (97) 0.04 ± 0.08 (39) 0.87 ± 0.16 2.12 ± 1.35

MBEBM (%) GS 0.14 ± 0.56 (70) −25.40 ± 17.11 (83) 0.61 ± 0.54 (86) 0.76 ± 0.15 10.12 ± 3.28

MBEY (%) GS −0.46 ± 0.61 (56) −15.12 ± 17.14 (57) 0.74 ± 0.64 (87) 0.72 ± 0.26 10.99 ± 3.57

a Bias period: the period of NARCliM MBE used for the regression. FTH = flowering to harvesting; GS = growing season (sowing to harvesting); PS = pre-sowing
(February 1 to sowing date); STF = sowing to flowering.

TABLE 3 VIF and the collinearity for the changes in climate (radiation: ΔR; temperature: ΔT; rainfall: ΔP; [CO2]: ΔCO2) and management variables (crop
residue incorporation: ΔRI; N-uses: ΔNU). Data without SBC (NonSBC) and with SBC (SBCMnSD) are analysed for the comparison. The rate of collinearity
(ColR, %) is shown for individual change factor or on-site based when one or more change variable is collinearity

Percentile ΔR ΔT ΔP ΔRI ΔNU ΔCO2 Site ColR (%)

Wheat

NonSBC MVIF ± SD 7.0 ± 3.5 10.8 ± 4.5 3.1 ± 2.7 2.1 ± 0.4 2.7 ± 0.6 16.3 ± 5.6

ColR (%) 10.5 48.1 0.3 0.0 0.0 94.9 95.1

SBCMnSD MVIF ± SD 4.5 ± 1.5 4.1 ± 1.8 3.21 ± 0.88 2.1 ± 0.5 2.5 ± 0.6 6.1 ± 2.1

ColR (%) 0.5 1.1 0.0 0.0 0.0 4.3 4.9

FIGURE 11 Probability distributions of baseline annual wheat yield simulated by APSIM forced by 12 NARCliM simulations and SILO observed climate
data for data without SBC (NonSBC) and with SBC (SBCMnSD) [Colour figure can be viewed at wileyonlinelibrary.com]
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crop residue (ΔRI) and NU (ΔNU), resulting in averaged R2

of 0.83 for NonSBC outputs and 0.85 for SBCMnSD out-
puts and <10% for SE of estimate in most of cases. Although
the absolute values of R2 did not differ greatly between
NonSBC and SBCMnSD, the benefits of the SBCMnSD are
significant as explained below. It was evident that regardless
of using data with SBC or without SBC, the change in wheat
yield was negatively correlated to the change of future grow-
ing season radiation but positively correlated to changes in
rainfall, NU and more residue incorporation (Figure 12). For
the remaining variables (temperature and CO2), the slopes of
regressions were inconsistent both in terms of magnitudes or
change direction, depending on locations or the data with or
without SBC. There are two distinct differences between the
NonSBC and SBCMnSD results. First, some coefficients
derived from NonSBC outputs were meaningless. For exam-
ple, the median of the coefficients quantifying CO2 response
by NonSBC yields were −2.4% [100 ppm CO2]

−1 for wheat
which contradicts the general understanding of CO2 fertiliza-
tion. After applying SBC, the median became +3.5%
[100 ppm CO2]

−1, which resulted in a CO2 fertilization rate

of 13.3% yield increase for doubling the current
[CO2]. Although this rate was still less than a rate measured
through an experimental approach reported by Pandey et al.
(2017), SBCMnSD outputs exhibited positive CO2 coeffi-
cients across almost the entire region, instead of largely neg-
ative CO2 coefficients with NonSBC outputs. Second, the
coefficients associated with NonSBC yields varied dramati-
cally, while those with SBCMnSD were much more consis-
tent and closer to those previously reported. For example,
the coefficients for temperature change by NonSBC showed
a 10th–90th percentile range from −1.4 to 23.2%/�C for
wheat, compared with the range from −6.5 to 4.8%/ C after
bias correction (SBCMnSD). The results from SBC were
consistent with previous reported temperature effects on
future wheat (i.e., Wang et al., 2017). In contrast, the aver-
age coefficients measuring the effect of ΔRI if the yields
were not subjected to bias correction were consistently lower
than those after SBC. For instance, 5.5%/tRI resulting from
NonSBC yields for wheat was lower than 7.9%/tRI obtained
from SBCMnSD yields, compared to 6.2–8.7%/tRI reported
by Liu et al. (2017). One of the possible reasons to explain

FIGURE 12 Spatial distribution of the coefficients of multiple least squared regression of wheat yield change (ΔY, %) as a function of changes in climate
(radiation: ΔR, %; temperature: ΔT, �C; rainfall: ΔP, %; [CO2]: ΔCO2, 100 ppm) and management (crop residue incorporation: ΔRI, t/ha; N-uses: ΔNU,
kgN/ha) in the formula, for data without SBC (NonSBC) and with SBC (SBCMnSD). Also included are the coefficient of determination (R2) and SE of the
regression analyses [Colour figure can be viewed at wileyonlinelibrary.com]
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the different RI rate between NonSBC and SBCMnSD is the
reduction of the effectiveness of residual incorporation due
to the negative rainfall bias because water is the media for
residual decomposition. The results indicated the biases in
climate variables can result in confounding contributions to
biophysical modelled outputs and increased uncertainties
with effects of climate change and farm management
practice.

In addition, SBC can effectively reduce the collinearity
of climate and management variables. The results show that
without SBC, ΔCO2 exhibits strong collinearity with other
variables, resulting in 95% of sites with VIF ≥ 10 for wheat
(Table 2), compared to the 4% for SBCMnSD. Similarly, the
next highly collinear variable was temperature that had 48%
of sites showing VIF ≥ 10 with the data of NonSBC vari-
ables, but 1% of sites with the data of SBCMnSD variables.
It is interesting to note that all management options (man-
agement practise) (ΔRI and ΔNU) and change in rainfall
(ΔP) did not exhibit collinearity, regardless of data with or
without SBC. Overall, 95% of sites had at least one variable
showing collinearity if the biases in these variables were not
corrected. But less than 5% of sites had collinearity when the
SBC was applied. Therefore, the coefficients resulting from
SBCMnSD significantly could provide a reliable estimate of
the effect of climate change and management impacts as the
SBC reduced the uncertainties in NonSBC outputs that were
the attributors for collinearity.

4 | DISCUSSION

Dynamical downscaling consistently improves the spatial
details of simulated climate compared to GCMs (Di Luca
et al., 2016). However, RCMs can inherit systemic biases
from GCMs and also can generate additional uncertainties in
their downscaling procedures (Giorgi et al., 2001).
Approaches to improve RCMs outputs are either by elimi-
nating the effects of GCMs biases by driving RCMs with
initial and boundary inputs of bias-corrected GCM data or
by removing the biases from RCM simulations with post-
processing bias correction. A number of reports (Jin et al.,
2011; Xu and Yang, 2012) demonstrated that dynamically
downscaled outputs forced by bias-corrected GCM data as
inputs resulted in significantly improved RCM outputs. Sim-
ilarly, post-processing bias correction was also demonstrated
as an effective approach in removing the biases in the out-
puts of RCM simulations (Di Luca et al., 2018). The NAR-
CliM project adopted the post-processing bias correction
approach and studies have demonstrated some success in
correcting biases in extreme rainfall and other rainfall char-
acteristics (Argüeso et al., 2013; Evans et al., 2017). Our
analysis showed that the data contained small magnitude
biases in rainfall and temperature on an annual basis, but
much larger magnitude of biases within cropping periods.
This suggests that post-processing bias correction

insufficiently corrected the seasonal biases, which is in
agreement with Manage et al. (2016) who showed the sea-
sonal cycle in the NARCliM data was stronger than seasonal
cycle present in observed climate. Our study suggested that
further investigations into bias correction should focus on
removing the seasonal biases by undertaking bias correction
at finer temporal scales such as seasonal or monthly.

In the cropping periods, NARCliM simulations exhibited
substantial biases in temperature and rainfall which varied
from RCMs driven by different GCMs and sites. The warm
or cold temperature biases can lead to faster or slower crop
development (Anwar et al., 2015; Wang et al., 2017). The
consequences of the rainfall biases in biophysical modelling
were more complex than temperature biases because the
rainfall characteristics can also alter the soil water balance
and water available for plant uptake. Low rainfall intensity
found in NARCliM simulations was one of the common fea-
tures for RCMs (Argüeso et al., 2013). Further, our analysis
showed that simulated lower rainfall intensity and lower
total rainfall associated with higher rainfall probability than
observed climate accounted for the largest proportion of
sites. Low intensity, frequent rainfall made the soil surface
wetter and resulted in greater soil water distribution in shal-
low layers. This characteristic rainfall pattern can reduce
water available for plant use because wetter soil surface can
contribute more soil water evaporation, hence resulted in less
water available for plant uptake. Our results showed that the
responses of the wheat cropping system to this type rainfall
are typically positive biases in soil evaporation across almost
all sites, which consequently lead to less water available for
plant transpiration and ultimately lower yield. In addition,
we found that the majority of sites had negative biases in
both RO and DD. This highlighted that rainfall characteris-
tics were as important as the total amount of rainfall in agri-
cultural systems. Improved downscaling outputs are
prerequisites for realistically assessing climate change
impacts in agricultural systems.

The confounding effects of RCM biases with climate
change signals are an issue in the application of biophysical
modelling for climate change impact assessment
(e.g., Macadam et al., 2016). APSIM represents the physio-
logical process that respond to climate and soil and their
interaction. In this study, the biases in NARCliM climate
variables accounted for a large proportion of the APSIM
biases in phenology (0.80–0.87 of R2) and crop growth
(R2 = 0.72–0.76) (Table 2). The effects of RCM biases can
overlay the climate change impacts. For example, +1 �C
temperature bias resulted in negative biases in wheat flower-
ing by −15 days, which was similar to advanced wheat
flowering under future +1 �C climate warming (Anwar et al.,
2015). RCM biases could also subsequently lead to mean-
ingless impact parameters or unrealistic magnitude of contri-
bution due to climate change. This confounding of effects of
the climate bias magnitude with climate change can further
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lead to significant collinearities between climate change and
farming management practice, hence resulting in invalid
regression analysis which are frequently used in determining
the contribution of changes in climate change and farm man-
agements to crop yield changes (Lobell and Burke, 2010;
Liu et al., 2016; Liu et al., 2017). Therefore, climate biases
can lead to false assessment of climate change impacts.

It is interesting to note that a simple SBC method applied
on the modelled yield outputs could result in RCM-driven
crop yields being consistent with the PDF of observation-
driven crop yields. Importantly, after the SBC was applied to
correct some of the biases in APSIM-simulated yield, the
parameters associated with the impact assessment became
more meaningful, that is, regaining positive atmospheric
CO2 effect on future crop production and diminishing the
false collinearity between changes in climate variables and
farm management practices. However, SBC used in our
study corrects the mean and variance under the assumption
of the APSIM responses of climate biases in baseline are the
same as in future periods. As crop models are implemented
with many linear and nonlinear functions, the response of
crop models to climate biases may interact with the changes
in environment conditions such as elevated future atmo-
spheric [CO2]. Such possible interacting responses of cli-
mate biases cannot be corrected by SBC. The SBC approach
used in this study to correct the biases in biophysical mod-
elled outputs is the same method that was used for correcting
climate variables (Haerter et al., 2011). Undoubtedly,
GCMs/RCMs-simulated climate outputs also resulted from
complicated nonlinear modelling processes that are even far
more complicated nonlinearity than that involved in a crop-
specific biophysical modelling. The use of such a linearity
of bias correction to the resultant outputs from nonlinear
modelling is not ideal but provides a useful tool neverthe-
less. However, preferences should be given to using
improved climate projections that can result in nil or little
biases in biophysical modelled outputs.

Process-based crop models such as APSIM are complex
biophysical models that require multiple climate variables as
inputs. The realism of the relationships between these vari-
ables is important for the simulation of biophysical pro-
cesses. For example, a rainy day may often be associated
with lower radiation, hence lower maximum temperature
and shorter diurnal temperature range than a dry day. An
unrealistic combination of a dry-day's radiation with wet
day, that is, with rainfall, is likely to result in higher soil
water evaporation due to wet soil surface with available
energy or vice versa. One advantage of dynamical downscal-
ing, relative to many statistical downscaling methods, is that
RCMs produce internally consistent data sets and maintain
variable cohesiveness. However, the post-processing bias
correction methods are often applied to individual climate
variables separately and this can impair the spatio-temporal
variable cohesiveness and consistency in the climate data

(Ehret et al., 2012; Teutschbein and Seibert, 2013). The con-
sequence of using the resultant climate data to run biophysi-
cal models can result in substantial errors in the modelled
outputs and can further complicate the crop modelling
through interacting with farm management options. This is
because soil nutrient uptake depends on water uptake, nega-
tive bias in soil water uptake can restrict up-taking abundant
nitrogen available in the soils hence enlarge the consequence
of RCM biases on crop growth. Soil water is the centre of
nearly all soil biological and chemical activities. Hence, the
effectiveness of farm management options such as residue
incorporation and nitrogen applications are largely influ-
enced by soil water, meaning the rainfall is the primary fac-
tor for achieving realistic modelling outputs in a semiarid
environment. Therefore, improved downscaled rainfall is a
crucial step for realistic assessment of climate change
impacts in agricultural systems.

5 | CONCLUSIONS

For the NARCliM bias-corrected data, we conducted com-
prehensive analysis of residual biases for different crop
growing stages and quantitatively determined the impacts on
crop model outputs. Substantial biases were identified in the
NARCliM data for the crop growing season. The growing
season temperature bias was translated to delay or advance
crop phenology when used as inputs for APSIM simulation.
The biases in rainfall characteristics were generally positive
in rainfall probability and negative in rainfall intensity,
which resulted in APSIM-simulated negative biases for most
of the study area in RO and DD and positive bias in soil
evaporation. Consequently, biases in soil water balance and
water availability resulted in less plant transpiration and less
N uptake. Ultimately, those biases together with biases in
crop phenology led to biases in crop yields. In addition, crop
management options particularly N applications could inter-
act with biases in RCM-simulated climate variables. This
study suggests that existing bias correction of NARCliM cli-
mate data does not result in climate data that can be used for
the assessment of climate change in agricultural studies.
Therefore, it is desirable to use more sophisticated post bias
correction technique on RCM climate data for realistic
assessments of climate change impacts in agricultural
systems.

Our study highlights that for assessing crop production,
the fundament importance of firstly assessing the biases and
uncertainties of climate projections and testing the hypothe-
sis of whether the outputs of biophysical models driven by
GCMs/RCMs-simulated climate are identical to those driven
by observed climate. SBC should be applied to correct the
biases in biophysical modelled outputs for realistic assess-
ment of climate change impacts. However, because the SBC
has limitations in correcting the nonlinearity of biophysical
responses to climate biases, preferences should be given to
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using improved climate projections that can result in little
biases in biophysical modelled outputs.
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