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Abstract

A computer simulation model was developed for predicting trace gas emissions from agricultural ecosystems. The
denitrification-decomposition (DNDC) model consists of two components. The first component, consisting of the
soil climate, crop growth, and decomposition submodels, predicts soil temperature, moisture, pH, Eh, and substrate
concentration profiles based on ecological drivers (e.g., climate, soil, vegetation, and anthropogenic activity). The
second component, consisting of the nitrification, denitrification, and fermentation submodels, predicts NH

3
, NO,

N
2
O, and CH

4
 fluxes based on the soil environmental variables. Classical laws of physics, chemistry, or biology or

empirical equations generated from laboratory observations were used in the model to parameterize each specific
reaction. The entire model links trace gas emissions to basic ecological drivers. Through validation against data
sets of NO, N

2
O, CH

4
, and NH

3
 emissions measured at four agricultural sites, the model showed its ability to

capture patterns and magnitudes of trace gas emissions.

Introduction

In the context of global climate change, several trace
gases, such as methane (CH

4
), nitrous oxide (N

2
O), ni-

tric oxide (NO), and ammonia (NH
3
), are drawing at-

tention because of their radiative or chemical effects in
the atmosphere. Field measurement campaigns were
launched for quantifying gas fluxes at site scale. Mean-
while, models were developed to extrapolate results
from the site scale to the regional or global scale. Soil
is one of the major sources of the four trace gases. Un-
der cultivated conditions, agricultural soils are subject
to a great deal of anthropogenic disturbance including
tillage, fertilization, irrigation, manure amendment,
weeding, and liming. Anthropogenic activities elevate
soil trace gas emissions and, hence, play an important
role in the atmospheric balance of the trace gases. Vari-
ous models, such as CASA (Potter et al., 1993), CEN-
TURY (Parton et al., 1996), ExpertN (Baldioli et al.,
1994), Hole-in-the-Pipe (Firestone and Davidson,
1989), NLOOS (Riley & Matson 1989), and others were
developed for scaling up gas emission estimates. Each
of the models has its own strategy or philosophy. Some
models tried to use the least number of input param-
eters and more empirical equations to capture basic

patterns of gas fluxes so that these models could be
easily used at the regional or global scale. Some mod-
els tried to include more mechanisms to better track
processes affecting gas production/consumption. To join
the modeling efforts, a University of New Hampshire-
based biogeochemical research group developed a proc-
ess-oriented model to predict NO, N

2
O, CH

4,
, and NH

3

emissions from agricultural ecosystems. Several papers
have reported on the early development of the model,
focusing only on N

2
O and CO

2
 (Li et al., 1992a; 1994).

This paper discusses the latest research progress includ-
ing simulations of NO, CH

4
, and NH

3
.

Model framework

Emissions of NO, N
2
O, CH

4,
 and NH

3
 are highly vari-

able in space and time. The challenges of modeling the
trace gas emissions come from three aspects: (1) some
of the gases (e.g., NO and N

2
O) have multiple sources

(e.g., nitrification, denitrification, and chemo-
denitrification); (2) all the gases are produced and con-
sumed simultaneously in the soils, controlled by the
kinetics of a series of geochemical or biochemical re-
actions; and (3) there are a large number of environ-
mental variables driving the biogeochemical reactions.
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To construct a process model of soil trace gases, all the
factors including ecological drivers, soil environmen-
tal variables, and biogeochemical reactions should be
integrated into one framework. To handle such a com-
plex system, we adopted the concept of a
biogeochemical field for our modeling practice. Paral-
leling the concept of biogeochemical cycle which de-
scribes the transport and transformation of the chemi-
cal elements, biogeochemical field answers what con-
trols the elements’ behavior. A biogeochemical field is
an assembly of the spatially and temporally differenti-
ated environmental forces that drive biogeochemical
reactions in an ecosystem. For example, the
biogeochemical field driving NO, N

2
O, CH

4,
 and NH

3
-

relevant reactions consists of the environmental forces
deriving from soil temperature, moisture, pH, Eh,
substrate concentration, and other soil environmental
factors. All the soil environmental factors are further
controlled by several ecological drivers including cli-
mate, soil physical properties, vegetation, and anthro-
pogenic activity. All the impacts in the system can be
categorized into two groups. The first group includes
the impacts of ecological drivers on soil environmental
variables; the second includes the impacts of the soil
environmental variables on trace gas-related
geochemical or biochemical reactions (Figure 1). The
goal of our modeling efforts was to build the two groups
of impacts in a model framework.

The denitrification-decomposition (DNDC)
model was constructed with two components. The first
component, consisting of the soil climate, crop growth
and decomposition submodels, predicts soil tempera-

ture, moisture, pH, redox potential (Eh), and substrate
concentration profiles based on ecological drivers (e.g.,
climate, soil, vegetation, and anthropogenic activity).
The second component, consisting of the nitrification,
denitrification and fermentation submodels, predicts
NO, N

2
O, CH

4
, and NH

3
 fluxes based on the soil envi-

ronmental variables. Classical laws of physics, chem-
istry, or biology or empirical equations generated from
laboratory observations were used in the model to
parameterize each specific reaction. The entire model
forms a bridge between trace gas emissions and basic
ecological drivers (Figure 2).

Linking ecological drivers to soil environmental
variables

The first task in model development was to set links
between ecological drivers and soil environmental vari-
ables. Usually, ecological drivers collectively affect soil
environmental variables. Since the combination of eco-
logical drivers in each ecosystem is unique, DNDC
needs site-specific input data of climate, soil, vegeta-
tion, and farming practices for the simulated agricul-
tural land. DNDC integrates the ecological drivers in
the three submodels to generate their collective effects
on soil temperature, moisture, pH, Eh, and substrate
concentrations. The soil climate submodel calculates
soil temperature, moisture, and Eh profiles by integrat-
ing air temperature, precipitation, soil thermal and hy-
draulic properties, and oxygen status. By integrating
crop characters, climate, soil properties, and farming
practices, the plant growth submodel simulates plant

Figure 1. A biogeochemical model is a mathematical expression of biogeochemical field which consists of spatially and temporally
differentiated environmental forces driving a series of biogeochemical reactions in ecosystems. Fluxes of NO, N

2
O, CH

4
, and NH

3
 are

regulated by directions and rates of the relevant biogeochemical reactions
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Figure 2. The DNDC model includes two components. The first component, consisting of the soil climate, plant growth, and decomposition submodels, predicts effects of climate, soil
physical properties, vegetation, and anthropogenic activity on soil temperature, moisture, pH, Eh, and substrate concentration profiles. The second component, consisting of the nitrifica-
tion, denitrification, and fermentation submodels, predicts NO, N

2
O, CH

4,
 and NH

3
 fluxes through simulating impacts of soil environmental conditions on the relevant geochemical and

biochemical reactions
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growth and its effects on soil temperature, moisture,
pH, Eh, dissolved organic carbon (DOC), and avail-
able N concentrations. The decomposition submodel
simulates concentrations of substrates (e.g., DOC, NH

4
+,

and NO
3
-) by integrating climate, soil properties, plant

effect, and farming practices. The three submodels in-
teract with each other to finally determine soil tempera-
ture, moisture, pH, Eh, and substrate concentrations in
the soil profile at a daily time step. Most of the equa-
tions used in this component have been reported in pre-
vious papers (see details in Li et al., 1992a; 1994; 1999).

Linking soil environmental factors to trace
gases

As the second step for developing the DNDC model,
we linked soil environmental variables to production
and consumption rates of trace gases. The links were
set up based on either the basic physical, chemical, or
biological laws, or equations obtained from the experi-
ments under controlled conditions so that the effect of
each soil variable could be distinguished.

NO and N
2
O

Biological oxidation/reduction dominates NO and N
2
O

evolution in soils. Nitrification (i.e., microbial oxida-
tion of ammonium) has been observed to be the main
source of NO and N

2
O under aerobic conditions (Equa-

tion 1). Based on the observations reported by Hooper
& Terry (1979), Bremner et al. (1980), Chalk & Smith
(1983), Tiedje (1988), Sexstone et al. (1985), Anderson
& Levine (1986), Papen et al. (1982), Davidson (1992),
Hutchinson & Davidson (1993), and Bollmann &
Conrad (1998), N

2
O or NO production is proportional

to nitrification rates, although the pathways remain
unknown. The factors controlling nitrification have been
determined to be soil temperature, moisture, pH, and
NH

4
+ concentration (Johansson & Granat, 1984;

Johansson, 1984; Slemr & Seiler, 1984; Williams et al.,
1987; Anderson & Levine, 1987; Anderson & Poth,
1989; Valente & Thornton, 1993; Martin et al., 1998;
Alexander, 1977; Saad & Conrad, 1993; Ingwerson et
al., 1998; Davidson, 1992a, Bock et al., 1986; Ward,
1987). Relationships between environmental factors and
nitrification rates were generalized from the observa-
tions and employed in the DNDC model. The model
predicts nitrification rate by tracking nitrifier activity
and NH

4
+ concentration (see equations 1.1-1.6 in the

Appendix). Following Blagodatsky & Richter (1998)

and Blagodatsky et al. (1998), growth and death rates
of NH

4
+ oxidizers are calculated based on DOC con-

centration, temperature, and moisture. Many observa-
tions indicated that nitrification-induced NO or N

2
O was

a fraction of nitrification rate (Van Niel, 1991;
Baumgartner & Conrad, 1992), and the fraction was
related to temperature (Johansson & Granat, 1984;
Johansson, 1984; Slemr & Seiler, 1984; Williams et al.,
1987; Anderson & Levine, 1987; Anderson and Poth,
1989; Slemr & Seiler, 1991; Valente & Thornton, 1993;
Martin et al., 1998). DNDC calculates nitrification-in-
duced NO or N

2
O production as a function of the pre-

dicted nitrification rate and temperature (equations 1.7
and 1.8 in the Appendix).

Nitrification: NH
4
+ →  H

2
NOH →  NOH → NO

2
-  →  NO

3
-

↓ ↓
NO N

2
O (1)

Denitrification is another main source of N
2
O and

NO from soils. Denitrification includes a sequential
reduction of nitrate to dinitrogen (N

2
) driven by

denitrifying bacteria under anaerobic conditions (equa-
tion 2) (Firestone et al., 1980; Payne, 1981; Anderson
& Levine, 1986; Poth & Focht, 1985; SSSA, 1987).
Based on field and laboratory observations,
denitrification rates are controlled by soil moisture and
Eh (Matsubara, 1971; Payne, 1973; Payne et al., 1971;
Goreau et al., 1980; Knowles, 1982; Smith, 1980, 1990;
Davidson & Schimel, 1995; Stevens et al., 1998), tem-
perature (Nömmik,1956; Stanford, 1975; Bailey &
Beauchamp, 1973; Dawson & Murphy, 1972), pH
(Wijler & Delwiche, 1954; Khan & Moore, 1968; Focht,
1974; Klemedtsoon et al., 1988; Blackmer & Bremner,
1978; Firestone et al., 1980; Leffelaar & Wessel, 1988;
Ashby et al., 1998), and substrate (e.g., DOC, NO

3
-,

NO
2
-, NO, and N

2
O) concentrations.

Denitrification: NO
3
- →  NO

2
- →  NO →  N

2
O →  N

2
(2)

The DNDC model simulates relative growth rates
of nitrate, nitrite, NO, and N

2
O denitrifiers based on

soil Eh, concentrations of DOC, and nitrogen oxides. A
simple scheme of “anaerobic balloon” was developed
in the model to divide the soil matrix into aerobic and
anaerobic parts. Tracking oxygen diffusion and con-
sumption in the soil profile, DNDC simulates swelling
and shrinking of the “anaerobic balloon.” Only the
substrates allocated in the anaerobic part are involved
in denitrification (see details in Li et al., 1999). Fol-
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lowing Bader (1978), a simple function describing
multinutrient-dependent growth has been set in the
model to calculate relative growth rates of the
denitrifiers (equations 2.1, 2.2, and 2.3 in the Appen-
dix). Death rate of denitrifiers is simply a constant frac-
tion of the total denitrifier biomass (equation 2.3 in the
Appendix). Following Leffelaar and Wessel (1988), we
assume that the relative growth rates for denitrifiers with
different substrates are independent, and competition
among the bacteria takes place via the common DOC
substrate. The Pirt equation is used to calculate con-
sumption rates of the substrates (equations 2.4 and 2.5
in the Appendix). Since denitrification is a typical se-
quential reaction, we followed the basic laws of sequen-
tial chemical kinetic reactions to calculate NO, N

2
O,

and N
2 
fluxes. As an intermediate of the reactions, NO

or N
2
O flux is determined by the rates of its produc-

tion, consumption, and escape from the reacting sys-
tem. A simplified equation was set in DNDC to calcu-
late diffusion rates of NO and N

2
O in the soil matrix.

The predicted diffusion rate is a function of soil poros-
ity, moisture, temperature, and clay content (equation
2.6 in the Appendix).

CH
4

Methane is an end product of the biological reduction
of carbon dioxide (CO

2
) or organic carbon under anaero-

bic conditions (equation 3) (Wassmann et al., 1993;
Cleemput & El-Seboay, 1985; Zeikus, 1977; Yagi &
Minami, 1990; Watanabe et al., 1993; Holland &
Schimel, 1994; Zhou et al., 1994; Nouchi et al., 1994;
Takai, 1970; Kimura et al., 1992; Kludze & Delaune,
1995; Li et al., 1993). According to the observations
obtained from field or laboratory studies, CH

4
 fluxes

were strongly controlled by soil available carbon (i.e.,
DOC) content (Tao et al., 1994; Shangguan, 1994; Chen
et al., 1992; Cicerone et al., 1992; Cai et al., 1995;
Schütz et al., 1989; Wassmann et al., 1993; De Groot
& Vermoessen, 1991; Inubushi et al., 1984; Sass et al.,
1991; Van Vee & Paul, 1981), soil Eh (Takai, 1956;
Oremland, 1988;  Schipper & Reddy, 1996; Kludze &
DeLaune, 1995; Masscheleyn et al., 1993), and soil tem-
perature (Conrad et al., 1987; Vogels et al., 1988;
Conrad, 1989; Yagi et al., 1990; Parashar et al., 1993;
Wang et al., 1993). The reduction of available carbon
to CH

4
 is mediated by anaerobic microbes (e.g.,

methanogens) that are only active when the soil redox
potential is low enough (Wassmann et al., 1993, Sass
et al., 1991). According to field observations by Kludze

& DeLaune (1994), Wang et al. (1993), and
Masscheleyn et al. (1993), CH

4
 production increased

exponentially with decreasing Eh with a threshold range
of –150 to –200 mV. Methane production increased with
increasing temperature, with an optimum range of 30–
40 °C. Based on the observations, DNDC calculates
CH

4
 production rate as a function of DOC content and

temperature as soon as the predicted soil Eh reaches –
150 mV or lower (equation 3.1 in Appendix).

Methane production: CO
2
 + 8 H+ →  CH

4
 + 2 H

2
O (3)

or

Organic C + 4 H+ →  CH
4

Methane is oxidized by aerobic methanotrophs
in the soil. Several researchers reported that 50–80%
of CH

4
 produced was oxidized in the same soil (Schütz

et al., 1989; Holzapfel-Pschorn et al., 1985; Sass et al.,
1991; Shangguan et al., 1993; Schipper & Reddy, 1996).
Researchers assumed that CH

4
 produced at low Eh soil

microsites could diffuse into high Eh microsites (e.g.,
the topsoil or the soil around roots), and hence be oxi-
dized rapidly under higher redox conditions (DeBont
et al., 1978; Holzapfel-Pschorn et al., 1985; Schütz et
al., 1989; Schipper & Reddy, 1994, 1996). DNDC cal-
culates CH

4
 oxidation rate as a function of soil CH

4

concentration and Eh (equation 3.2 in the Appendix).
A highly simplified scheme was employed in DNDC
to model CH

4
 diffusion between soil layers based on

CH
4
 concentration gradients, temperature, and poros-

ity in the soil (equation 3.5 in the Appendix).
Many researchers reported that plant-mediated

transport dominated CH
4
 emissions from the soil into

the atmosphere (Kludze & DeLaune, 1995; Schütz et
al., 1989; Nouchi et al., 1994; Cicerone & Shetter,
1981). Linear relationships between CH

4
 emissions and

crop aboveground biomass during the growing season
have been observed by Sass et al. (1990) and Whiting
et al. (1991). DNDC predicts plant-transported CH

4
 flux

as a function of CH
4
 concentration and plant

aerenchyma (equation 3.3 in the Appendix). If the soil
is unvegetated or the plant aerechyma is not well de-
veloped yet, ebullition plays a major role in CH

4
 emis-

sions (Nouchi, 1994; Schütz et al., 1989; Chanton et
al., 1989; Kelley et al., 1990; Byrnes et al., 1995). In
DNDC, we assume that ebullition only occurs at the
surface layer, and ebullition rate is regulated by soil
CH

4
 concentration, temperature, porosity, and plant

aerenchyma (equation 3.4 in the Appendix).
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NH
3

Soil NH
3
 concentration is directly regulated by a chemi-

cal reaction occurring in the soil liquid phase:

[NH
4
+] + [OH-] = [NH

3 (liquid)
] + H

2
O (4)

where [NH
4
+] is ammonium concentration, [OH-] is

hydroxide ion concentration, and [NH
3 (liquid)

] is ammo-
nia concentration in soil water.

DNDC calculates NH
3 (liquid)

 concentration based
on NH

4
+ and OH- concentrations (equation 4.1 in the

Appendix). NH
4
+ concentration in the soil profile is

calculated by the decomposition submodel. The
submodel calculates turnover rates of soil organic mat-
ter at a daily time step (Li et al., 1992a). OH- concen-
tration is determined by soil pH and temperature based
on Stumm and Morgan (1981). The concentration of
NH

3
 in the soil gas phase is proportional to the NH

3

concentration in the liquid phase as well as soil tem-
perature (Glasstone, 1946; Sutton et al., 1993). We as-
sume that daily  emitted fraction of the gas phase NH

3

is related to the soil air-filled porosity and clay content
due to their effects on NH

3
 gas diffusion (equation 4.2

in the Appendix).
Based on field observations by Hooker et al.

(1980) and Parton et al. (1988), ambient NH
3
 can be

absorbed and metabolized by the plants. Plant absorp-
tion rates of NH

3
 have been observed to be related to

NH
3
 concentration in the air around the leaves

(Hutchinson, 1972; Hutchinson et al., 1972; Meyer,
1973, Farquhar et al., 1979, 1980; Lockyer & White-
head, 1986), N shortage in the crops (Harper et al.,1987),
leaf surface moisture (Dabney & Bouldin, 1985; Harper
et al., 1987; Sutton et al., 1993), and plant-growing stage
(Farquhar et al., 1979; Hooker et al., 1980; Schjorring,
1991). A linear relationship between dry NH

3
 deposi-

tion rates and air NH
3
 concentrations was observed by

Hutchinson (1972), Meyer (1973), Cowling & Lockyer
(1981), Aneja et al. (1986), and Sommer & Jenson
(1991). Based on their observations, the concept of N
deposition velocity can be represented by the ratio of
NH

3
 absorption rate (µg m-2 s-1) to air NH

3
 concentra-

tion (µg m-3). Reported velocity values range from 0.003
to 0.034 m s-1 (Cowling & Lockyer, 1981; Aneja et al.,
1986; Sommer & Jenson, 1991) for different crops such
as grass, maize, snap bean, soybean, oats, and fescue.
The maximum value of the range (i.e., 0.034 m s-1) was
adopted in DNDC for calculating NH

3
 absorption rate

by crops. In addition, factors such as plant N status and
leaf surface moisture were also included in the calcula-

tion (equation 4.3 in the Appendix). A highly simpli-
fied scheme was included in DNDC to calculate NH

3

concentrations in the air between the ground and the
top of the canopy, based on the predicted soil NH

3
 flux,

atmospheric background NH
3
 concentration (0.06 ppm,

based on Ayers & Gras [1980] and Tsunogai & Ikeuchi
[1986]), and degree of closure of the canopy. Farquhar
et al. (1979) and Harper et al. (1987) observed NH

3

release from the leaves during the late stages of crop
growth. DNDC tracks total N content in the crops dur-
ing the whole growing season (Li et al., 1994). When
the model detects a decrease in the total plant N con-
tent, the reduced part will be regarded as the NH

3
 flux

released from the plants.
The equations describing the effects of soil envi-

ronmental factors on NO, N
2
O, CH

4
, and NH

3 
were or-

ganized into three submodels. The fermentation
submodel contains all the CH

4
-related equations. This

submodel calculates production, oxidation, and trans-
port of CH

4
 under submerged conditions. The

denitrification submodel contains all the denitrification
equations. This submodel calculates production, con-
sumption, and diffusion of N

2
O and NO during rain-

fall, irrigation, or flooding events. Nitrification-related
equations are included in the nitrification submodel.
As a logical extension of the NH

4
+/ NH

3 (liquid)
/ NH

3 (gas)

equilibrium, functions for NH
3
 production and

volatilization are also included in the nitrification
submodel. The three submodels compose the second
component of the DNDC model.

Input and output

Input parameters required by DNDC include daily tem-
perature and precipitation, soil bulk density, texture,
organic carbon content, pH, and farming practices (e.g.,
crop type and rotation, tillage, fertilization, manure
amendment, irrigation, flooding, grazing, and weeding).
Profiles of soil environmental variables as well as trace
gas fluxes are calculated based on the input data. When
DNDC is used for regional estimates of trace gas emis-
sions, the model needs the spatially and temporally dif-
ferentiated input data stored in geographic information
system (GIS)-type databases in advance (Li et al.,1996).
Based on the input parameters of the ecological driv-
ers, DNDC first predicts daily soil temperature, mois-
ture, Eh, pH, and substrate concentration, and then uses
the environmental parameters to drive nitrification,
denitrification, CH

4
 production/oxidation, and other

relevant geochemical or biochemical reactions. Daily
emissions of NO, N

2
O, CH

4,
 and NH

3 
are finally calcu-
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lated as their daily net fluxes. Most parts of the model
run at a daily time step except the soil climate and
denitrification submodels which run at an hourly time
step. Output parameters from the model runs are daily
soil profiles of temperature, moisture, Eh, pH, and con-
centrations of total soil organic carbon, nitrate, nitrite,
ammonium, urea, ammonia, as well as daily fluxes of
CO

2
, NO, N

2
O, CH

4,
 and NH

3
. All the daily and annual

output data are recorded for future use. For the regional
version of DNDC, the simulated results are recorded
as geographically explicit data in a GIS database.

Model tests

The DNDC model has been tested against several field
studies. The old results related to N

2
O and soil organic

carbon have been published (e.g., Li et al., 1992b; Li et
al., 1994; Li, 1997; Frolking, 1998). Here are reported
four new cases that were examined recently for NO,
N

2
O, CH

4,
 and NH

3
, respectively. The characteristics

of the four agricultural sites are listed in Table 1.

NO

Fluxes of NO were measured at a winter wheat field in
Wu County, Jiangsu Province, China, from 1 Nov 1996
to 9 Feb 1997 by Xunhua Zheng and her colleagues
(1998). Urea and farmyard manure (equivalent to 114
kg N ha-1) were applied on 1 Nov 1996. During the first
40 d following the application, high NO fluxes were
observed in the fertilized plot but not in the control plot
(Figure 3). Predicted results agreed with observed data
and indicated that high fluxes were mainly caused by
elevated nitrification rates following fertilizer applica-
tion. In addition, the relatively high temperature in the
early days of the experimental period also enhanced
urea hydrolysis and nitrifier activity. The temperature
effect can also be seen in the control plot.

N
2
O

Nitrous oxide was measured by Crill et al. (1998) for
two plots, fertilized and unfertilized, in a maize field at
La Selva Biological Station in Costa Rica from No-
vember 1994 to March 1995. Ammonium nitrate and
urea (30-90 kg N ha-1) were applied on 25 Nov and 6
Dec 1994 on the fertilized plot. During the two maize-
growing seasons, N

2
O fluxes were consistently low in

the unfertilized plot. In contrast, in the fertilized plot,
high peaks were observed immediately after fertilizer
application. Simulation results agreed with observed
results showing the same two high peaks as observed
in the field (Figure 4), indicating that the surges of N

2
O

Table 1. Characteristics of four field sites for model validation tests.

Site Crop type Annual average Annual Gas measured Soil Soil Soil
temperature precipitation texture organic pH

(°C) (cm) C

Wu, Jiangsu, China Winter wheat 17.0 115.6 NO Clay loam 0.01 7.0
La Selva, Costa Rica Maize 24.7 438.2 N

2
O Clay 0.028 6.8

Texas, USA Rice 18.7 99.7 CH
4

Loam 0.02 6.5
Fengqiu, Henan, China Rice 14.6 64.2 NH

3
Sandy loam 0.0035 8.8

Figure 3. Measured and predicted NO fluxes from fertilized (a)
and control (b) plots in a winter wheat field at Wu County, Jiangsu,
China, 1 Nov 1996-9 Feb 1997
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emissions were mainly caused by denitrification. Since
soil temperature, moisture, and DOC did not limit
denitrifier activity in the plot, additions of inorganic N
immediately stimulated denitrification and N

2
O emis-

sions. Simulated results indicated that N was a limiting
factor in the soil, although nitrification rates were high
due to the rapid turnover of soil organic matter. The
high demand of plants and soil microbes for N, as well
as the strong leaching effect, did not allow NO

3
- or NH

4
+

to accumulate in the topsoil.

CH
4

Ron Sass and his colleagues (1991) measured CH
4

fluxes from two rice field plots, with and without straw
amended, at Beaumont, Texas. The measured CH

4

fluxes from the straw-amended plot were almost twice
higher than that from the control plot. Field observa-
tions indicated that the higher CH

4
 production in the

amended plot was mainly due to additional available C
produced from straw decomposition. Model simulations

Figure 4. Measured and predicted N
2
O fluxes from fertilized (a) and control (b) plots in a maize field at La Selva Biological Station in

Costa Rica, November 1994-March 1995
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showed similar results (Figure 5). Both measured and
model data showed a slight depression of CH

4
 emis-

sions in the middle of the growing season. Predicted
data showed that the depression was caused by deple-
tion of the labile straw and the undeveloped rice
aerenchyma at that time.

NH
3

At a rice field in Fengqiu County, Henan Provice, China,
Cai and Zhou (1995) measured NH

3
 fluxes from the

rice soils. Ammonium bicarbonate and urea were ap-
plied at the same rate (90 kg N ha-1) to two plots to test
the effect of different fertilizer types on NH

3
 emissions.

Field measurements were conducted at 4-h intervals for
9 d following fertilizer applications. NH

3
 fluxes meas-

ured at the ammonium bicarbonate-applied plot were
initially very high, and then rapidly decreased to al-
most zero in the 4 d after fertilizer application. In con-
trast, at the urea-fertilized plot, NH

3
 fluxes were ini-

tially low, and gradually increased to a maximum value
on the fifth day, and then decreased to a low level 8 d
after application. Patterns of NH

3
 fluxes observed in

the field were simulated by the model (Figure 6). Simu-
lation results showed that the applied ammonium bi-
carbonate immediately increased NH

3
 concentration in

the rice field water due to the equilibrium between NH
4
+

and NH
3
 in the soil liquid phase. High soil pH (8.8)

enhanced NH
3
 volatilization from the rice soil. In con-

trast, it took 4 d for the applied urea to be gradually
hydrolyzed. The hydrolysis slowed down NH

3

volatilization in the urea plot.
Simulated results from the four data sets showed

that (1) DNDC was able to simulate the basic patterns
of NO, N

2
O, CH

4
, and NH

3
 fluxes under various farm-

ing conditions; (2) predicted total emissions during the
experimental span agreed with the measurements (Ta-
ble 2); and (3) measured temporal variations in gas

Figure 5. Measured and predicted CH
4
 fluxes from control (a) and

straw-amended (b) plots in a rice field at Texas A&M University
Agricultural Center near Beaumont in Texas, USA, 1989-90
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Table 2. Comparison between measured and predicted trace gas emissions

Site Gas tested Treatment Experimental days Total flux during experimental span
(no.) Measured Predicted Unit

Wheat field at Wu County, NO Fertilized 95 0.53 0.51 kg N ha–1

   Jiangsu, China Control 95 0.14 0.31 kg N ha–1

Maize field at La selva, N
2
O Fertilized 125 1.25-1.40 1.17 kg N ha–1

   Costa Rica Control 125 0.29-0.46 0.39 kg N ha–1

Rice field at Texas, USA CH
4

Amended 90 98.9 93.8 kg C ha–1

with straw
Control 90 54.7 53.9 kg C ha–1

Rice field at Fengqiu County, NH
3

Fertilized with 9 48.3 55.2 kg N ha–1

   Henan, China ammonium
bicarbonate
Fertilized with 9 31.0 31.9 kg N ha–1

urea
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Figure 6. Measured and predicted NH
3
 fluxes from urea-fertilized

(a) and ammonium bicarbonate-fertilized (b) plots in a rice field at
Fengqiu County, Henan, China. The NH

3
 fluxes were measured in

the field with 4-h intervals although DNDC only predicts daily
NH

3 
emissions

fluxes can be explained with the equations built in the
model.

Discussion

The DNDC model reported in this paper is the result of
a 10-yr effort to predict trace gas emissions from agri-
cultural ecosystems. By linking ecological drivers to
soil environmental variables, and further, to trace gas-
related biogeochemical reactions, DNDC acts as a
bridge between ecological drivers and the chemical el-
ements’ behavior. During development of the model,
we made every effort to incorporate the basic mecha-
nisms or processes into the model, although gaps still
exist in almost every component of the model. For ex-
ample, the highly simplified diffusion equations could
have brought large uncertainties to the simulated re-
sults. Nevertheless, we hope that we have established a
useful tool that can be used not only for synthesizing
existing observations obtained by hundreds of research-
ers during the last several decades but also for testing
new hypotheses for future studies. In comparison with
other models focusing on a couple of trace gases, DNDC

has the advantage of  predicting CO
2
, NO, N

2
O, CH

4,

and NH
3 
simultaneously. This feature could be valu-

able in assessing the net effect of the changing climate
or alternative agricultural management on either the at-
mosphere or agriculture. Linked to GIS databases of
climate, soil, vegetation, and farming practices, DNDC
is ready for regional estimation of trace gas emissions.

Methodology development is also one of the
motivations for this modeling effort. Since V.I. Vernatski
initiated the concept of biogeochemistry in his famous
book La Geochimie in 1924, 75 yr have passed. During
the first 50 yr of this time period, biogeochemistry, as a
scientific discipline, did not develop very fast due to
the lack of social demands. Only during the last two
decades, when global climate change provided new
challenges to the scientific community, did people re-
discover the potential of biogeochemistry in integrat-
ing the macro processes occurring at the ecosystem level
with the micro processes at the molecular or atomic
scale. To meet the new demand, we need to develop
new methodologies based on biogeochemical concepts
or principles. The modeling effort reported in this pa-
per is a continuation of our long-term biogeochemical
studies. The strategy and methodologies used in this
modeling study have been successfully used in several
ecological studies including human health (Li & Yu,
1973) and environmental pollution (BEARG, 1997).
The author hopes this paper will fuel more interest in
the methodology studies in this interdisciplinary realm.
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Appendix: Equations and parameters

1. Nitrification
Equation 1.1. Relative growth rate of nitrifiers
     dG/dt = 0.0166 * (DOC / (1.0 + DOC) + Fm / (1.0 + Fm));

Equation 1.2. Relative death rate of nitrifiers
     dD/dt = 0.008 * BIO * 1.0 / (1.0 + DOC)/ (1.0 + Fm);

Equation 1.3. Net increase in nitrifier biomass
   dBIO/dt = (dG/dt – dD/dt) * BIO * Ft * Fm;
   BIO = ∫24dBIO/dt;

Equation 1.4. Nitrification rate
    Rn = [NH4+] * (0.005 *BIO) * pH,  (kg N/ha/day);

Equation 1.5. Temperature factor
    Ft = 3.503(60.0-T/(60.0-34.22) * e3.503*(T-34.22)/(60.0-34.22);

Equation 1.6. Moisture factor
    Fm = 0.8 + 0.21 * (1.0 - wfps), if wfps > 0.05;
    Fm = 0, if wfps <= 0.05;

Equation 1.7. Nitrification-induced NO (kg N/ha/d)
    NO = 0.0025 * Rn * Ft;
Equation 1.8. Nitrification-induced N

2
O (kg N/ha/d)

    N2O = 0.0024 * Rn;
    DOC – Concentration of dissolved organic C, kg C/ha;
    BIO – Nitrifier biomass, kg C/ha;
    [NH4

+] – Concentration of ammonium, kg N/ha;
pH – Soil pH.

2. Denitrification
Equation 2.1. Relative growth rate of NOx denitrifiers (1/h)
    GR

NOx
 = GR

 NOx
(

max
) * [C / (Kc + C)] * [NOx / (Kn + NOx)];

Equation 2.2. Relative growth rate of total denitrifiers (1/h)
    GR = Ft * (GRNO3 

* PH1 + GRNO2 
* PH2 + GR

NO 
 * PH3 + GRN2O 

* PH4);
     Ft = a*2(T - 22.5) / 10.0;

Equation 2.3. Denitrifier growth/death and consumption of soluble carbon (kg C/m3/h)
    Growth rate :  (dBIO/dt)g = GR  * BIO(t);
    Death rate: (dBIO/dt)d = Mc * Yc * BIO(t);
    Carbon consumption rate: dC/dt = (GR / Yc + Mc) * BIO(t);

Equation 2.4. Consumption rates of N oxides (kg N/m3/h)
    d(Nox)/dt  = (GR

NOx
 / Y

NOx
 + M

NOx * 
NOx  / N) * BIO(t);

Equation 2.5. Nitrogen assimilation rate (kg N/m3/h)
    (dN/dt)

a
 = (dBIO/dt)

g
  / CN;

Equation 2.6. NO, N2O and N2 diffusion rates (%)
    NO and N

2
O: diffuse = (0.0006+0.0013*AD)+(0.013-0.005*AD)*PA*(1-anvf);

    N2: diffuse 0 0.017+((0.025-0.0013*AD)*PA*(1-anvf);
GRNO3(max) – Maximum growth rate of NO3

- denitrifiers, 0.67 1/h (Hartel & Alexander, 1987);
GRNO2(max) 

– Maximum growth rate of NO
2
- denitrifiers, 0.67 1/h (Hartel & Alexander, 1987);

GRNO(max) – Maximum growth rate of NO denitrifiers, 0.34 1/h (Hartel & Alexander, 1987);
GRN2O(max) – Maximum growth rate of N2O denitrifiers, 0.34 1/h (Hartel & Alexander, 1987);
Kc – Half-saturation value of soluble carbon, 0.017 kg C/m3 (Shah & Coulman, 1978);
Kn – Half-saturation value of N oxides, 0.083 kg N/m3 (Shah & Coulman, 1978);
C - Soluble C concentration, kg C/m3 (calculated by DNDC);
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NO
x
 - Concentration of NO

3
-, NO

2
-, NO or N

2
O, kg N/m3 (calculated by DNDC);

PH1, PH2, PH3 = a * (soil pH – b), a=0.4, and b=2.5, 3.0, or 3.5, respectively; factors of impact of pH on NO3
-, NO2

-, and
NO and N2O denitrifiers (Focht,1974);
BIO(t)– Denitrifier biomass at time t, kg C /m3 (calculated by DNDC);
Mc – Maintainance coefficient on carbon, 0.0076 kg C /kg/h (Van Verseveld et al., 1977);
Yc – Maximum growth rate on soluble carbon, 0.503 kg C /kg C (Van Verseveld et al., 1977);
YNO3,

YNO2, 
YNO, 

YN2O – Maximum growth rate on NO
3
-, NO

2
-, NO and N

2
O, respectively, 0.401, 0.428, 0.151, 0.151 kg C /kg

N (Van Verseveld et al., 1977);
M(NO3), M(NO2), M(N2O), M(NO)– Maintainance coefficient on NO3

-, NO2
-, N2O and NO, respectively, 0.09, 0.035, 0.079, 0.079 kg

N /kg/h (Van Verseveld et al., 1977);
CN – C/N in denitrifiers, 3.45 (Van Verseveld & Stouthamer, 1978).

3. CH
4
 Production and Oxidation

Equation 3.1. CH4 production rate (kg C/ha/d)
    CH4p = a * AC * Ft;
    Ft = b * e(0.2424 * T); (factor of temperature)

Equation 3.2. CH4 oxidation rate (kg C/ha/d)
    CH

4
o = CH4[l] * e (8.6711 * Eh[l] / 1000);

Equation 3.3. CH4 flux through plant aerenchyma (kg C/ha/d)
    CH4(aere)

 = 0.5 * CH4[l] * AERE;
    AERE = -0.0009*PGI5+0.0047*PGI4 -0.883*PGI3+1.9863*PGI2-0.3795*PGI+0.0251;
    PGI = (days since planting) / (season days); (plant growth index)
Function 3.4. CH

4
 flux through ebullition (kg C/ha/d)

    CH4(ebullition) = 0.025 * CH4[l] * PORO * Ft * (1 - AERE);
    Ft = -0.1687*(0.1*T[l])3 +1.167*(0.1*T[l])2 -2.0303*(0.1*T[l])+1.042;
Function 3.5. CH

4
 diffusion rate (kg C/ha/d)

    Rd = 0.01 * (CH4[l] - CH4[l+1]) * T[l] * PORO;
AC – Available C concentration, kg C/ha;
T – soil temperature, °C;
l – soil layer number;
AERE – plant aerenchyma;
FloodDay – flooding days;
PORO – soil porosity;
CH4[l] – CH4 concentration at layer l, kg C/ha.

4. NH3 Volatilization
Equation 4.1. NH3 concentration in liquid phase (mol/l)
    [NH3(l)] = [NH

4
+][OH-] / Ka;

    NH4
+/NH3 equilibrium constatnt: Ka = (1.416 + 0.01357 * T) * 10-5;

    [OH-] = Kw / [H+], mol/l;
    [H+] = 10-pH, mol/l;
    Kw = 10^(0.08946 + 0.03605 * T) * 10-15; (water dissociation constant)

Equation 4.2. NH
3
 concentration in gas phase and flux (kg N/ha)

    NH3(g) = [NH3(l)] * (T/T 0)
2 ;

    Flux(NH3) = NH3(g) * AFPS * (1-Clay), kg N/ha/d;

Equation 4.3. NH3 deposit (kg N/ha/d)
    Vg = MaxVg * F(plant-N) * F(lsm);
    F(plant-N) = Plant-N(act) / Plant-N(opt);
    F(lsm) = LSM(act) / LSM(max);
    PlantUp(NH3) = Vg * Air(NH3) * LAI * 0.864;
    Air(NH3) = Base(NH3) + Flux(NH3) * 10^9  / V(canopy) * LAI / (LAI + k2) * k3;
    V(canopy) = Height * 10000;
T0 – reference temperature, 45°C;
T – soil temperature, °C;
PH – soil pH;
AFPS – soil air-filled porosity;
Clay – soil clay content;
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MaxVg – maximum NH
3
 deposit velocity , 0.05 m/s;

Plant-N(act) – crop N content, kg N/ha;
Plant-N(opt) – crop optimum N content, kg N/ha;
LSM(act) – water content on leaf surface, cm;
LSM(max) – maximum  water content on leaf surface, cm;
Base(NH3) – background NH3 concentration, 0.06 ug/m3;
V(canopy) – volume of the room from ground to the top of canopy, m3/ha;
Height – maximum height of plant, m;
LAI – crop leaf area index;
MaxLAI – maximum crop leaf area index;
K2, k3 – constant coefficients;


