
Summary The Monte Carlo technique can be used to propa-
gate input variable uncertainty and parameter uncertainty
through a model to determine output uncertainty. However, to
carry out Monte Carlo simulations, the uncertainty distribu-
tions or the probability density functions (PDFs) of the model
parameters and input variables must be known. This remains
one of the bottlenecks in current uncertainty research in forest
carbon flux modeling. Because forest carbon flux models in-
volve many parameters, we questioned whether it is necessary
to take into account all parameters in the uncertainty analysis.
A sensitivity analysis can determine the parameters contribut-
ing most to the overall model output uncertainty. This paper il-
lustrates the usefulness of the Monte Carlo simulation tech-
nique for ranking parameters for sensitivity and uncertainty in
process-based forest flux models.

The uncertainty of the output (net ecosystem exchange,
NEE) of the FORUG model was estimated for the Hesse
beech forest (1997). Based on the arbitrary uncertainty of ten
key parameters, a standard deviation of 0.88 Mg C ha–1 year –1

NEE was found which is equal to 24% of the mean value of
NEE. Sensitivity analysis showed that the overall output un-
certainty of the FORUG model can largely be determined by
accounting for the uncertainty of only a few key parameters.
The results led to the identification of the key FORUG param-
eters and to the recommendation for a process-based descrip-
tion of the soil respiration process in the FORUG model.

Keywords: least square linearization, photosynthesis, proba-
bility density function, soil respiration.

Introduction

In the context of a changing climate, the primary objectives of
forest modeling studies are to predict how forests will respond
to climate change and to enhance our current knowledge of the
ecophysiological processes affected by climate change. Pro-
cess-based models provide an opportunity to achieve both ob-

jectives. However, these models usually predict discrete out-
puts and provide no assessment of the reliability of the output.
Gertner (1987) concluded that an assessment of the variance or
uncertainty of model outputs is desirable and useful: (1) to
gauge the reliability and precision of predictions; (2) to calcu-
late confidence intervals; (3) to statistically test hypotheses
when experiments are performed with the model; and (4) to
weight outputs used as an auxiliary source of information in
combination with field-sample estimates.

The Monte Carlo technique can be used to estimate model
output uncertainty. Moreover, the main disadvantage of the
Monte Carlo technique, which is the long computational time
(Gertner et al. 1996), has diminished in importance as the
computational capacity of computers has increased. However,
to carry out Monte Carlo simulations, the uncertainty distribu-
tions or the probability density functions (PDFs) of the model
parameters must be known. The PDFs can be estimated based
on experimental data, as has been done for forest growth and
allocation models. For example, MacFarlane et al. (2000) esti-
mated the PDFs of 14 physiological or morphological parame-
ters of the Pipestem model based on published data. Mäkelä
(1988) described this type of analysis for a forest growth
model based on the functional balance and the pipe model the-
ory. For more complex ecophysiological flux models, how-
ever, the estimation of PDFs is time consuming and so tends to
severely limit the frequency with which uncertainty analyses
are conducted (MacFarlane et al. 2000), even though estima-
tion of the PDFs of parameters based on “expert knowledge”
rather than experimental data is better than failing to conduct
uncertainty analyses.

Parameters can be ranked for uncertainty by the Monte
Carlo technique in combination with a multiple linear regres-
sion. This sensitivity analysis estimates the uncertainty contri-
bution of all parameters to the overall output uncertainty. This
catalogue of error sources is also called the “error budget”
(Gertner et al. 1996). Parysow et al. (2000) applied this
method to a process growth model based on the pipe model
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theory and the self-thinning rule and concluded that the
method provides an efficient strategy for building error bud-
gets of process models with many model inputs.

Most complex forest models have many parameters. The
goal of our study was to identify, by sensitivity analysis, the
parameters of the FORUG model—a process-based forest
flux model—contributing most to overall output (net ecosys-
tem exchange (NEE)) uncertainty, and thereby determine if it
is necessary to estimate the uncertainty of all parameters of a
model to determine overall output uncertainty. We made no at-
tempt to verify the validity of the FORUG model, although we
recognize that the characterization of errors and the contribu-
tion of each model parameter to the total error are key aspects
of the evaluation of forest growth models (Vanclay and Skovs-
gaard 1997).

Materials and methods

The FORUG model

The FORUG model is a multi-layer process-based model that
simulates CO2 and H2O exchange between forest stands and
the atmosphere. Main model outputs are NEE, total ecosystem
respiration (TER), gross primary production (GPP) and
evapotranspiration. We focused on NEE as output because net
exchange of carbon between forests and atmosphere deter-
mines the role of forests in the global carbon cycle (Law et al.
2001).

One understory and three upperstory canopy layers were
considered. A radiation module calculates the available direct
and diffuse photosynthetic active radiation (PAR) in each veg-
etation layer (Spitters 1986, Spitters et al. 1986). In each layer,
intercepted PAR is calculated for the sunlit and shaded leaf
fraction (Lemeur 1973). This intercepted PAR drives the pho-
tosynthesis submodel. Photosynthesis and stomatal conduc-
tance are calculated according to Farquhar et al. (1980) and
Ball et al. (1987). Photosynthesis and leaf respiration parame-
ters are temperature dependent as described by Medlyn et al.
(2002) and de Pury and Farquhar (1997). Soil respiration is
calculated based on a simple exponential function of soil tem-
perature as described by Granier et al. (2002). Woody biomass
respiration is calculated with a temperature function according
to Ceschia et al. (2002). To simulate NEE, the FORUG model
uses 54 parameters. All relevant equations are listed in the Ap-
pendix and Table A1. For a detailed model description, see
Samson (2001) and Boonen et al. (2002).

Data

The data used in this modeling study are the meteorological
and flux data of the beech (Fagus sylvatica L.) site in Hesse
(France, 48°40′ N, 7°05′ E, 300 m above sea level) measured
within the framework of the EUROFLUX project (Moncrieff
et al. 1997, Valentini 1999, Aubinet et al. 2000). The Hesse
forest is 30 to 35 years old and has been described by Granier
et al. (2000, 2002).

Uncertainty

The overall uncertainty of any model is a combination of three
sources of uncertainty (Beck 1987): uncertainty of the input
variables (e.g., measurement errors), uncertainty of the model
parameters (e.g., lack of information to calibrate all parame-
ters) and uncertainty of the model structure (e.g., underlying
equations and assumptions). We focused on the second source
of uncertainty.

The Monte Carlo technique is a numerical technique to cal-
culate output uncertainty of a model. The Monte Carlo ap-
proach was developed by Stanislaw Ulam and John von Neu-
man to simulate probabilistic events for military purposes in
1946 (Frey and Li 2001). The method, which has been de-
scribed extensively (e.g., Hammersley and Morton 1964, Vose
1996, Cullen and Frey 1999), is robust and relatively easy to
implement. Whereas error propagation methods can be diffi-
cult to implement when the uncertainty distributions or PDFs
are not normally distributed, the Monte Carlo technique can
handle different distribution types and can always be imple-
mented in a relatively straight-forward manner (Gertner et al.
1996).

To use the Monte Carlo technique, a PDF is needed for each
model parameter and input variable that is considered to be un-
certain. To start the Monte Carlo analysis, one random sample
from the PDF of each parameter and input variable is selected
and the set of samples is entered into the deterministic model.
The model is then solved as for any deterministic analysis. The
model output variables are stored and the process is repeated
until a specified number of model simulations is completed.
Instead of obtaining a discrete number for the model output as
in a deterministic simulation, a set of output samples is ob-
tained (Cullen and Frey 1999). After a sufficiently large num-
ber of simulations, the distribution function of the output can
be determined.

We made no distinction between the uncertainty and the nat-
ural variability of the parameters. Uncertainty of a parameter
can usually be reduced by collecting more information about
that parameter. Natural variability is a characteristic of a pa-
rameter that cannot be reduced by collecting more informa-
tion. To make this distinction, a second-order Monte Carlo
analysis should be applied (Cullen and Frey 1999). Most of the
FORUG parameters are only uncertain. Although some of the
parameters of the FORUG model are both uncertain and vari-
able, the uncertainty of these parameters is dominant. There-
fore the distinction between uncertainty and variability of the
FORUG model parameters was considered irrelevant and all
FORUG parameters were considered as uncertain. The uncer-
tainty of the measured input variables (e.g., temperature, in-
coming radiation) was not taken into account because this
uncertainty is mainly due to relatively small measurement
errors.

In Monte Carlo simulations, the PDF of the parameters and
input variables are required. If enough data are available, input
PDFs can be determined based on knowledge and measure-
ments. Unfortunately, information about distributions of pa-
rameters is often unavailable and as a result, input distributions

808 VERBEECK, SAMSON, VERDONCK AND LEMEUR

TREE PHYSIOLOGY VOLUME 26, 2006



are often estimated based on an “expert guess.”
Beside the PDFs, the minimum number of simulations has

to be determined which depends on the model structure and
the statistic of interest. Our statistic of interest was the vari-
ance of the FORUG model output. Because forest models can
be complex and can require substantial computational re-
sources, it may be important to reduce the overall require-
ments for calculation.

It is important that each simulation of an analysis is a feasi-
ble scenario. To exclude impossible parameter combinations,
correlations between the different uncertain parameters should
be taken into account. This is possible when the correlation co-
efficients are known. Burmaster and Anderson (1994) state
that the presence of moderate to strong correlations will have
little effect on the central portions of the output distributions,
but may have larger effects on the tails of the output distribu-
tions. Therefore, when there is interest in the tails of the distri-
butions, correlations should be taken into account. Several
techniques exist to simulate correlations in Monte Carlo analy-
sis (Iman and Conover 1982, Vose 1996, Cullen and Frey
1999).

Sensitivity analysis to rank for sensitivity and uncertainty

It is difficult to determine the probability density function of
all parameters in a process-based forest model. For models
with a large number of parameters (the FORUG model has
54 parameters), we can question whether it is necessary to take
all parameters into account in the uncertainty analysis. To de-
termine the parameters contributing most to the output uncer-
tainty, a sensitivity analysis can be conducted to rank the
parameters.

One drawback of the Monte Carlo technique is that a com-
bined output uncertainty is calculated. This means that it is im-
possible to determine the contribution of each parameter to
the overall output uncertainty. A possible solution is to use
the least square linearization (LSL; Lei and Schilling 1996)
which splits output uncertainty into its sources and can be con-
ducted on the results of a Monte Carlo analysis. The LSL is a
multiple regression between the parameter deviation from the
mean and the output. All parameters are varied at the same
time, whereas some sensitivity analysis methods perturb only
one parameter at a time. By using the LSL, the contribution of
each parameter to the overall output uncertainty is estimated.
Parameters contributing little to the output uncertainty can be
excluded.

The LSL method in combination with Monte Carlo analysis
has the advantage of being able to simultaneously: (1) rank pa-
rameters according to their importance in influencing output
uncertainty; (2) predict output uncertainty as a function of un-
certainty in model input variables and parameters; (3) partition
the error contribution of the model input variables and parame-
ters in terms of output variance; and (4) provide the foundation
for the optimal reduction of output uncertainty or cost associ-
ated with additional data collection (Parysow et al. 2000).
Moreover, as Saltelli et al. (2000) stated, sensitivity estimators
such as standardized regression coefficients are easy to imple-
ment, relatively inexpensive and intuitive.

Equations 1 and 2 provide some mathematical background
to the LSL method which is in essence a multiple regression
between the parameter deviation from the mean and the out-
put. Consider a variable, y, that depends on a number of inde-
pendent variables, v1, v2, …, vn. The variation of y as a function
of small variations in independent variables can be expressed
as:
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The LSL conducted on the Monte Carlo simulation results
can be expressed as follows: Δvi is defined as the difference be-
tween vi, the random chosen sample of parameter i and mVi,
the mean value of parameter i of all the random samples. The
value of Δvi is assumed to be equal to δVi, the “true” uncer-
tainty of parameter i and Vi,true is the “true” value of parame-
ter i.

Δv v m v Vi i v v i i, truei i
= ≈ =– –δ (3)

When m Monte Carlo simulations are carried out, Δvi for
each parameter and the model output y are calculated for each
simulation. Next, a multi-linear regression on the obtained
dataset is performed. The Δvi values are considered as inde-
pendent variables and the output y is the dependent variable.
This gives the following regression equation:

y w v w v w v b≈ + + + +1 1 2 2Δ Δ Δ... n n (4)

The regression coefficients (wi) are estimated by minimiz-
ing the sum of squared errors. Comparing this with Equation 2,
it can been seen that the coefficients w1, w2, …, wn are esti-
mates of the partial derivatives of y with respect to vi and b is
an estimate of the value of y at default parameter values (i.e.,
when Δv i = 0 for all i).

If the uncertainties of the independent parameters are statis-
tically independent, the overall variance of the model output
( )

y
σ δ

2 can be calculated as:
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2
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where σ δ vi

2 is the variance of the calculated difference δVi.
Based on the regression coefficients and the variations of the

parameter uncertainties, the sensitivity coefficient of each pa-
rameter i (SVi) can be approximated as:
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Depending on the scale of the parameter variation, different
variants of the sensitivity analysis can be conducted (Frey and
Patil 2002). We used two variants of the sensitivity analysis.
First, sensitivity of the model output to an infinitesimal small
variation of all 54 parameters was assessed because no proper
PDFs are available for all parameters. An infinitesimal varia-
tion is approximated by using uniform distributions with a
maximum deviation of 1% for all 54 parameters. This analysis
assessed the impact of the parameter values on the output with-
out the effect of their individual distributions. This method is
helpful for screening the most important parameters when no
information on their uncertainty is available, which was the
main goal of this study. This variant of sensitivity analysis is
used to rank the parameters of the FORUG model for sensitiv-
ity.

Second, simulations were run in which parameters were as-
signed probability distributions and the effect of variance in
the parameters on the output distribution was assessed. These
distributions were based on “expert knowledge.” This second
variant of sensitivity analysis was used to test the effect of arbi-
trary PDFs on the ranking of the parameters of the FORUG
model. This ranking is called ranking for uncertainty.

For both variations of the sensitivity analysis, correlation
between parameters was not taken into account. All parameter
combinations of the FORUG model were checked systemati-
cally based on the available information. This exercise led to
the conclusion that some of the parameters were expected to
be correlated. For a few parameters, relationships are available
in the literature. For example the relationship between maxi-
mum electron transport rate (Jmax) and maximum carboxy-
lation rate (Vcmax) has been described in several papers, e.g.,
Wullschleger (1993), Niinemets et al. (1998) and Medlyn et al.
(1999). However, correlation was expected to have no major
influence on the first sensitivity analysis because only small
deviations with a maximum of 1% were used. Because the sec-
ond sensitivity analysis was used only to test the effect of arbi-
trary PDFs and given the current poor knowledge of PDFs,
including the PDFs of Jmax and Vcmax, it was considered irrele-
vant to take correlations into account.

Results

Number of simulations

The variance was selected to represent the output uncertainty.
In Figure 1, the variance of the simulated NEE is plotted after
every simulation. Figure 1 shows that after 2000 simulations
the variance of the model output converged. Thus, 2000 simu-
lations are sufficient to predict the output variance of the
FORUG model. This compares well to the 2048 simulations
necessary to obtain good approximations of variances found
by Gertner et al. (1996). Running only 2000 simulations in-

stead of 10000 (a commonly used number of simulations)
results in an 80% reduction in calculation time.

Ranking parameters for sensitivity

For this analysis, a uniform distribution with a maximum devi-
ation of 1% was attributed to all 54 uncertain parameters.
Based on 2000 Monte Carlo simulations (Figure 1), the contri-
bution of all 54 parameters to the overall output uncertainty
was calculated according to Equations 3–6. Table 1 shows that
96% of the output uncertainty is caused by the uncertainty of
the 10 most important parameters, i.e., the other 44 parameters
determined only 4% of the output uncertainty.

More than 70% of the overall output uncertainty is deter-
mined by the two coefficients (asoil and bsoil) of the soil respira-
tion model. Two important parameters determine the photo-
synthesis process: the initial quantum yield (αF) and the
maximum carboxylation rate (Vcmax). Table 1 also shows that
the light extinction coefficient for diffuse radiation (kd) plays
an important role. Other sensitive parameters appearing in the
list are associated with the photosynthetic process: the activa-
tion energy of the temperature dependence of Vcmax (Eav) and
the Michaelis-Menten constant for carboxylation (Kc). The
rest of the list contains less sensitive parameters: the Michaelis
Menten constant for oxygenation (Ko), the CO2 compensation
point (Γ*) and the partial pressure of oxygen in the air (O). The
other 44 parameters do not appear in the list and have an indi-
vidual contribution that is less than 0.94%.

Ranking parameters for uncertainty

Because of lack of information of the different parameter val-
ues of the FORUG model, the PDFs of the parameters could
not be estimated based on experimental data. Therefore, in
contrast with the ranking for sensitivity, a wider range and
sometimes different type of distribution was attributed to
all 54 uncertain parameters for this analysis. The choice of
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Figure 1. The variance of the FORUG output net ecosystem exchange
(NEE; Mg C ha–1 year–1) for the Hesse forest in 1997 plotted as a
function of the number of Monte Carlo simulations. For these simula-
tions, all 54 uncertain parameters were taken in account.



the distributions was based on “expert knowledge.” Although
there are enough published data from measurements on seed-
lings to fit a lognormal distribution for Jmax and Vcmax (Jarvis
1999, Medlyn et al. 1999, Levy and McKay 2003), the PDFs of
these parameters were also based on “expert knowledge” be-
cause our study was conducted in a more than 30-year-old
beech stand.

Normal and lognormal distributions are widely adopted
PDFs for modeling uncertain parameters. Because these distri-
butions are unbounded at two sides and one side, respectively,
they are inappropriate for bounded parameters (Wu and Tsang
2004). To exclude random values that cannot appear in the en-
vironment, truncated distributions were useful. Therefore, a
uniform or triangular distribution was used for all parameters
(see Appendix, Table A2).

A uniform distribution was attributed to a parameter with a
minimum and a maximum boundary, but without information
about the uncertainty. Maximum deviations of 5, 10 and 20%
were used. A triangular distribution was attributed to parame-
ters that were thought to have a higher probability close to the
mean value. It is easier to estimate minimum and maximum
boundaries of a parameter (which has to be done for uniform
and triangular PDFs) than to estimate the variation of a PDF
(which is needed for normal and lognormal PDFs).

A maximum deviation of 10% was chosen for most parame-
ters (see Appendix, Table A2) which is a common deviation
that corresponds with other carbon flux studies, e.g., Hirsch et
al. (2004). The triangular probability distribution function was
also used by Paul et al. (2003) who applied Monte Carlo simu-

lations to the carbon accounting model GRC3. A triangular
distribution with a maximum deviation of 10% means that the
parameter has a probability of one at the mean value and a
probability of zero at ± 10% of the mean value.

The contribution to the overall uncertainty of the ten most
important parameters is shown in Table 2. Compared with the
ranking for sensitivity (Table 1), the order of importance
changed. Parameter H has appeared in the list. This is the deac-
tivation energy of the temperature dependence of Jmax. On the
other hand, parameter O (the partial pressure of oxygen in the
air) has disappeared. When the contributions are summed,
more then 97% of the overall uncertainty appears to be due to
these ten parameters.

Again soil respiration coefficients appear high in the list
contributing more than 63% of the output uncertainty. The
light extinction coefficient for diffuse radiation (kd) gained in
importance. As expected, the remainder of the list comprises
parameters describing the photosynthetic process.

Output uncertainty

The distribution of the simulated NEE for the year 1997 for the
Hesse forest is shown in Figure 2. This distribution is based on
2000 Monte Carlo simulations. The uncertainty analysis ac-
counted for only the ten parameters appearing in Table 2. The
mean simulated output value is –3.63 Mg C ha–1 year –1 (a neg-
ative value of NEE indicates a net carbon uptake by the eco-
system). The standard deviation of the output distribution is
0.88 mg C ha–1 year –1. The variance is 0.77. In the Euroflux
project, a total NEE value of –2.83 Mg C ha–1 year –1 was mea-
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Table 2. Results of the ranking for uncertainty. The contribution (%)
of the uncertain parameters to the overall uncertainty of the FORUG
model output net ecosystem exchange (NEE). Results are based on
2000 Monte Carlo simulations for the year 1997 for the Hesse forest
in France.

Parameter Description Process Contribution
to overall
uncertainty
(%)

bsoil Coefficient Soil respiration 49.67
kd Extinction coefficient Light extinction 14.91

for diffuse radiation
asoil Coefficient Soil respiration 13.66
αF Initial quantum yield Photosynthesis 5.24
Vcmax Maximum carboxylation Photosynthesis 4.51

rate
Kc Michaelis-Menten con- Photosynthesis 3.17

stant for the carboxylation
Eav Activation energy of temp- Photosynthesis 2.80

erature dependence of Vcmax

Γ* CO2 compensation point Photosynthesis 1.84
H De-activation energy of Photosynthesis 1.02

temperature dependence
of Jmax

Ko Michaelis-Menten con- Photosynthesis 0.55
stant for oxygenation

Table 1. Results of the ranking for sensitivity. The contribution (%) of
the uncertain parameters to the overall uncertainty of the FORUG
model output net ecosystem exchange (NEE). Results are based on
2000 Monte Carlo simulations for the year 1997 for the Hesse forest
in France.

Parameter Description Process Contribution
to overall
uncertainty
(%)

bsoil Coefficient Soil respiration 54.16
asoil Coefficient Soil respiration 16.03
αF Initial quantum yield Photosynthesis 6.36
Vcmax Maximum carboxylation Photosynthesis 6.18

rate
kd Extinction coefficient Light extinction 3.71

for diffuse radiation
Eav Activation energy of Photosynthesis 3.54

temperature dependence
of Vcmax

Kc Michaelis-Menten cons- Photosynthesis 3.32
tant for the carboxylation

Γ* CO2 compensation point Photosynthesis 2.70
Ko Michaelis-Menten Photosynthesis 0.98

constant for oxygenation
O Partial pressure of oxygen Photosynthesis 0.94

in the air



sured for the year 1997. The measured value of the NEE dif-
fers from the mean simulated value, but falls within the range
of one standard deviation of the output distribution.

Discussion

The ten key parameters found in both rankings correspond to
critical parameters found in the literature. Before discussing
the ecological meaning of the sensitivity analysis and the out-
put uncertainty, we emphasize two limitations of the analyses.

First, the PDFs used for the ranking for uncertainty are arbi-
trarily chosen based on “expert knowledge.” This second vari-
ant of the sensitivity analysis based on these PDFs was con-
ducted to see if these PDFs would give new information about
the key model parameters. The ranking for uncertainty, how-
ever, did not give any additional information about the key pa-
rameters compared with the ranking for sensitivity. Therefore,
because proper PDFs are not known, the discussion focuses
only on the key parameters found by ranking for sensitivity.
The only conclusion that can be drawn from this ranking for
uncertainty is the need for experimental data to quantify these
PDFs. However, such experimental data are not easy to obtain.

Second, the mean values for each parameter were assumed
for both rankings, representing a particular scenario. The ma-
jor conclusion that can be drawn is that the ten most important
parameters determine more than 90% of the output uncer-
tainty. However, the analysis does not suggest that the mean
output value is determined by these ten parameters alone. A
sensitivity analysis on the same model using different mean
parameters may give different results.

Soil respiration parameters

The high ranking of the soil respiration parameters a soil and
b soil is noteworthy. The simple soil respiration model used in
the FORUG model is dependent only on soil temperature (see
Appendix, model description). The high sensitivity of the
model output uncertainty for soil respiration could be ex-
pected because flux measurements give a mean annual soil
respiration that is 69% of the total ecosystem respiration in Eu-
ropean forests (Janssens et al. 2001). The correspondence with
findings of eddy covariance measurements (Valentini et al.
2000) can be considered as a verification of the FORUG
model. High sensitivity for soil parameters and processes has
also been found for other carbon flux models, e.g., EFIMOD
(Komarov et al. 2003).

The high sensitivity for the individual parameters of soil res-
piration points to the importance of the soil respiration pro-
cess, but it also partly reflects the fact that this soil respiration
model uses only two parameters. This is a small number of
parameters compared with, for example, the photosynthesis
model. Use of a more complex soil respiration model will
likely not decrease the contribution of the soil respiration pro-
cess, but it will decrease the sensitivity to each individual pa-
rameter. Epron et al. (1999) have already recommended that
soil water content be incorporated in further development of
predictive models of NEE because summer drought may occur
at irregular intervals in Western Europe. Clearly, a more com-
plex soil respiration model which is process-based and not em-
pirical like the current model is needed to predict the soil
respiration process more accurately. The model should differ-
entiate between heterotrophic and autotrophic respiration and
should be based on several environmental factors including
temperature, soil water content and soil organic matter.

In addition, soil respiration has a year-round influence on
NEE in contrast to, e.g., the photosynthetic process. During
winter, soil respiration is almost the only factor influencing
carbon exchange between the forest stand and the atmosphere
which is another reason for the high ranking of the soil respira-
tion parameters.

The impact of the soil parameters also depends on the type
of ecosystem. For example, in tropical forest, where relatively
small amounts of carbon are passed to the soil pools and turn-
over times are fast, soil submodel parameters have a smaller
effect on the predicted NEE (Hirsch et al. 2004).

Photosynthesis parameters

The high ranking of the parameters that determine the photo-
synthetic process directly and indirectly reflects the fact that
this process drives carbon uptake. Leuning et al. (1998) report
a high sensitivity to the quantum yield of photosynthesis. This
also corresponds with the results of Mäkelä (1988) where pa-
rameters related with shading and potential photosynthesis
were found to be critical. In forest ecosystems, most leaves are
not light saturated; therefore, a small change in quantum yield
has an important impact on overall canopy CO2 uptake. How-
ever, maximum carboxylation rate (Vcmax) has almost the same
contribution as quantum yield (Table 1), indicating that these
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Figure 2. Distribution of the total net ecosystem exchange (NEE; Mg
C ha–1 year–1) in 1997 for the Hesse forest in France. The calculation
of this distribution is based on 2000 Monte Carlo simulations. Only
the uncertainty of ten key parameters was taken into account. The
black bar above shows the measured (Euroflux) NEE value and does
not represent a frequency.



two parameters are most important in determining overall can-
opy photosynthesis. Parameters Vcmax and αF determine An(c)
and An( j), respectively (Equations A10 and A11). In contrast,
some photosynthetic parameters have only a small impact on
NEE. For example, dark respiration rate (Rd) has a contribu-
tion of only 0.35%.

Crown architecture

The importance of light regime as a driving factor for photo-
synthesis is indicated by the high ranking of kd. This is be-
cause, in contrast to direct radiation, diffuse radiation is inter-
cepted by sunlit, as well as by shaded, leaves. Moreover,
diffuse radiation affects the ecosystem every day, even when it
is cloudy, whereas the direct radiation component is present
only on sunny days.

Although leaf area index (L) has an indirect influence on the
output through the extinction coefficient for diffuse radiation
(Equations A2–A4), L itself contributes only 0.75%.

Ranking for sensitivity versus ranking for uncertainty

When both rankings are compared, differences are relatively
small (Tables 1 and 2) because for most parameters the same
triangular PDFs with a maximum deviation of 10% are used to
rank for uncertainty. Because the expert knowledge about
most parameters is quite limited, only a few parameters were
attributed PDFs with a different shape or range. Use of more
differentiated PDFs would result in larger differences between
the rankings for sensitivity and uncertainty and would make
the ranking for uncertainty more valuable.

Output uncertainty

The analysis of output uncertainty resulted in a standard devia-
tion of 0.88 Mg C ha– 1 year – 1 which is 24% of the mean value
of NEE. Because the uncertainty we calculated is based on ar-
bitrarily chosen PDFs based on expert knowledge, the esti-
mated uncertainty has no absolute value and is largely subjec-
tive. It only indicates the effect of the chosen PDFs on the
output uncertainty. Uncertainties with the same order of mag-
nitude can be found in the literature. For example, Hirsch et al.
(2004) found an uncertainty of 35% of the mean value of the
net carbon flux simulated with the CARLUC (3PG) model for
the Brazilian Amazon. Our uncertainty analysis took account
of only the ten key parameters that explained more than 90%
of the output uncertainty (Figure 2). More accurate parameter
distributions of these key parameters (Tables 1 and 2) and de-
tailed knowledge of their corresponding processes will lead to
a decrease in the overall uncertainty of the FORUG model out-
put.

In conclusion, the standard deviation of the uncertainty of
the output (NEE) of the FORUG model for the year 1997 for
the Hesse beech forest, based on arbitrary PDFs of ten key pa-
rameters, was calculated as 0.88 Mg C ha– 1 year – 1, which
is 24% of the mean value of NEE. Future research on the
FORUG model should focus on a better description of poorly
described key processes. In particular, the exponential soil res-
piration model needs revision. More accurate estimates of the

key parameters (Tables 1 and 2) are necessary to make more
reliable FORUG predictions. Determination of the parameter
PDFs and the correlations between the different uncertain pa-
rameters remain bottlenecks in uncertainty analysis for com-
plex forest flux models. Because of lack of information about
the key parameters, the final uncertainty analysis of the
FORUG model is based on simple PDFs of the key parameters
and correlation was not taken into account. Future research
should attempt to obtain proper parameter PDFs and to de-
scribe correlations where present. We conclude that sensitivity
analysis allows efficient error resource allocation which can
help focus future research on the key parameters. The Monte
Carlo simulation technique is a useful tool for ranking the un-
certainty of parameters of process-based forest flux models.
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Appendix: Description of the FORUG model

PAR interception model (Lemeur 1973)

For the direct and diffuse component of the PAR radiation, the
penetrated irradiance can be written as:

I L I I k Lb b o, b b( ) – exp –( ) ( )= ρ (A1)

I L I I k Ld d o, d d( ) – exp –( ) ( )= ρ (A2)

The shaded fraction of a leaf intercepts only diffuse radia-
tion:

I k I I k Lshade d d o, d dexp –(= ( ) )– ρ (A3)

Sunlit leaves intercept diffuse and direct radiation:

I I k Isun shade b o, d= + (A4)

Biochemical photosynthesis model (Farquhar et al. 1980, de
Pury and Farquhar 1997)
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The above equations are analytically solved as described by
Baldocchi (1994).

Temperature dependencies
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Dark respiration
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Soil respiration

R a b Tsoil soil soil soilexp(= ) (Granier et al. 2002) (A23)

Woody biomass respiration

R R Qstem stem,15
T –15) /10)= 10

(( (Ceschia et al. 2002) (A24)
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Table A1: Parameters and variables used in the Equations A1–A29.

Symbol Parameter or variable Units

asoil Regression parameter µmol CO2 m–2 soil s–1

An Net photosynthetic rate µmol CO2 m–2 s–1

An(c) Carboxylation-limited rate of An µmol CO2 m–2 s–1

An( j) Electron transport-limited rate of An µmol CO2 m–2 s–1

b1 Parameter (150.0) no unit
b2 Parameter (10.0) no unit
b3 Parameter (0.2) no unit
bsoil Regression parameter no unit
Ca CO2 concentration of the atmosphere µmol CO2 mol–1 air
C i Intercellular CO2 concentration µmol CO2 mol–1 air
Cs CO2 concentration at the leaf surface µmol CO2 mol–1 air
Dn Day of the year no unit
Eaj Activation energy for Jmax kJ mol–1

Eav Activation energy for Vcmax kJ mol–1

gb Leaf laminar boundary layer conductance for CO2 m s–1

g l Conductance slope no unit
go Conductance intercept m s–1

gs Stomatal conductance for CO2 m s–1

H Deactivation energy for Jmax kJ mol–1

I(L) PAR intensity at downward cumulative LAI L µmol photons m–2 s–1

Io PAR intensity above the canopy µmol photons m–2 s–1

J Electron transport rate µmol electrons m–2 s–1

Jmax Maximum electron transport rate µmol electrons m–2 s–1

Jmax(25) Jmax at 25 °C µmol electrons m–2 s–1

kd Extinction coefficient for diffuse radiation no unit
′K Effective Michaelis-Menten constant of Rubisco Pa

Kc Michaelis-Menten constant of carboxylation Pa
Kc(25) Kc at 25 °C Pa
Ko Michaelis-Menten constant of oxygenation Pa
Ko(25) Ko at 25 °C Pa
L Leaf area index m2 leaf area m–2 soil area
O Partial pressure of oxygen in the air kPa
Q10 Temperature response factor no unit
R Gas constant (8.314) J mol–1 K–1

Rd Dark respiration rate µmol CO2 m–2 s–1

Rd(25) Rd at 25 °C µmol CO2 m–2 s–1

Rsoil Soil respiration rate µmol CO2 m–2 soil s–1

Rstem Total stem and branch respiration rate µmol CO2 m–2 wood s–1

Rstem,15 Rstem at 15 °C µmol CO2 m–2 wood s–1

S Electron-transport temperature response parameter J K–1 mol–1

T Temperature °C
Tsoil Soil temperature °C
Tstem Stem temperature °C
Vcmax

* Maximal carbon assimilation rate µmol CO2 m–2 s–1

Vcmax( )25 Vcmax
* at 25 °C µmol CO2 m–2 s–1

Vcmax Peak value of Vcmax
* during the growing season µmol CO2 m–2 s–1

αF
* Quantum yield µmol CO2 µmol–1 photons

αF Peak value of αF
* during the growing season µmol CO2 µmol–1 photons

ΔHaR Activation energy for Rd kJ mol–1

Γ* CO2-compensation point Pa
Γ*(25) Γ* at 25 °C Pa
ρb Reflection coefficient for direct PAR no unit
ρd Reflection coefficient for diffuse PAR no unit
Subscripts
b Beam (direct) radiation
d Diffuse radiation
shade Shaded leaf fraction
sun Sunlit leaf fraction
Abbreviation
RH Relative humidity no unit



TREE PHYSIOLOGY ONLINE at http://heronpublishing.com

UNCERTAINTY AND SENSITIVITY OF THE FORUG MODEL 817

Table A2: Mean values and probability density functions (PDFs) of the parameters used in Equations A1–A24.

Parameter Value PDF (% deviation)

asoil 0.436 µmol CO2 m–2 soil s–1 (Granier et al. 2002) Triangular (10)
bsoil 0.156 (–) (Granier et al. 2002) Triangular (10)
Eaj 37.0 (kJ mol–1) (de Pury and Farquhar 1997) Triangular (10)
Eav 64.8 (kJ mol–1) (de Pury and Farquhar 1997) Triangular (10)
g l 9.50 (–) (Harley and Baldocchi 1995) Uniform (10)
go 17.5 (–) (Harley and Baldocchi 1995) Uniform (10)
H 220 (de Pury and Farquhar 1997) Triangular (10)
Jmax(25) 121.6; 79.6; 64.4* (Jarvis 1999) Triangular (10)
kd 0.7 (Samson 2001) Triangular (20)
Kc(25) 40.4 (de Pury and Farquhar 1997) Triangular (10)
Ko(25) 24.8 × 103 (de Pury and Farquhar 1997) Triangular (10)
Lmax 5.6 (Granier et al. 2000) Triangular (10)
O 21 (de Pury and Farquhar 1997) Triangular (5)
Q10 1.33 (Ceschia et al. 2002) Triangular (10)
Rd(25) 0.42 (Harley and Baldocchi 1995) Triangular (10)
Rstem,15 0.239 (Ceschia et al. 2002) Triangular (10)
S 710 (de Pury and Farquhar 1997) Triangular (10)
Vcmax(25) 49.4; 32.34; 26.16* (Jarvis 1999) Triangular (10)
αF

* 0.24 (Harley and Baldocchi 1995) Triangular (10)
ΔHaR 66.4 (de Pury and Farquhar 1997) Triangular (10)
Γ*(25) 3.69 (de Pury and Farquhar 1997) Triangular (10)
ρd 0.092 (de Pury and Farquhar 1997) Triangular (5)

* Top, middle and lower canopy layer, respectively.


