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Abstract

Advection equations appear often in large-scale mathematical models arising in many fields of science and engineering. The Crank-Nicolson scheme can successfully be used in the numerical treatment of such equations. The accuracy of the numerical solution can sometimes be increased substantially by applying the Richardson Extrapolation. Two theorems related to the accuracy of the calculations will be formulated and proved in this paper. The usefulness of the combination consisting of the Crank-Nicolson scheme and the Richardson Extrapolation will be illustrated by numerical examples.
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1. Statement of the problem

Consider the advection equation:
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It will be assumed that the wind velocity 
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 is a given function that depends on the two independent variables. Equation (1) must always be considered together with appropriate initial and boundary conditions.

The well-known Crank-Nicolson scheme (see, for example, [1], p. 63) can be used in the numerical treatment of (1). The computations are carried out by the following formula:
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when the Crank-Nicolson scheme is used. The quantity 
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where 
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 and the increments 
[image: image7.wmf]x

 and 
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 of the spatial and time variables are introduced by using two equidistant grids:
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It should be possible to vary the increments 
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 and 
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 (for example 
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 must be allowed when the convergent rates are studied). It will be assumed that the ratio 
[image: image15.wmf]k

/

h

 remains constant when the increments are varied. This implies a requirement that if, for example, 
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 is halved then 
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 is also halved. More precisely, it will be assumed that if an arbitrary pair of increments 
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where 
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 is a constant which does not depend on increments. The requirement to keep 
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 constant is very reasonable.
Assume that 
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 is the exact solution of (1) at an arbitrary grid-point belonging to the set defined by the two grids (4) and (5). Then the values 
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)  calculated by (2) are approximations of the exact solution at the grid-points 
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. Our major task in the following part of this paper will be to show how the accuracy of the approximations 
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 can be improved by using additionally the Richardson Extrapolation.

The application of the Richardson Extrapolation, when an arbitrary advection equation (not only the particular equation which was introduced in the beginning of this section) is treated by any numerical method, will be described in Section 2. The error constants in the leading terms of the numerical error for the Crank-Nicolson scheme will be calculated in Section 3. The order of accuracy of the combination of the Crank-Nicolson scheme and the Richardson Extrapolation will be established in Section 4. Numerical results will be presented in Section 5 to demonstrate the applicability of the theorems proved in Section 3 and Section 4. Several concluding remarks will be given and discussed in Section 6.
2. Application of the Richardson Extrapolation
Assume that a one-dimensional hyperbolic equation similar to (1) is treated by an arbitrary numerical method, which is of order 
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 be the set of approximations of the solution of (1) calculated for 
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 at all grid-points 
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, of (4) by using the numerical method chosen and the corresponding approximations 
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. Introduce vectors 
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 respectively. Since the order of the numerical method is assumed to be 
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where 
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. It is convenient to rewrite the last equality in the following form:
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where
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If  
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 are sufficiently small, then the sum 
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 will be a good approximation of the errors in the calculated values of the numerical solution 
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. If the relationship (6) is satisfied and if  
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 will also be a good approximation of the error of the numerical solution 
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. This means that if we succeed to eliminate the term 
[image: image62.wmf]K

k

p

 in (8), then we shall obtain approximations of order 
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. The Richardson Extrapolation can be applied in the attempt to achieve such an improvement of the accuracy. In order to apply the Richardson Extrapolation it is necessary to introduce an additional grid:
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Assume that approximations 
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. Use only the components with even indices 
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. The following equality holds for this vector:
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where the quantity 
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 is defined as in (9). 

Now, it is possible to eliminate the quantity 
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 from (8) and (11). This can successfully be done in the following way: 
(a) remove the last two terms in (8) and (11), 
(b) multiply (11) by 
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2

  
and 
(c) subtract (8) from the modified equality (11). 
The result is:
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Denote:
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It is clear that the approximation 
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, being of order 
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 are sufficiently small. The device used to construct the approximation 
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 is often called Richardson Extrapolation (it was introduced in [2]; see also [3], [4], [5], [6] and [7]). If the unknown function 
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 is sufficiently smooth (i.e. if its partial derivatives up to order  
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 exist and are continuous), then one should expect (13) to produce more accurate results than those obtained by the underlying numerical method.
Remark 1: The rest terms in the formulae given in this section will in general depend on both 
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 and 
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. However, the application of the relationship (6) gives 
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 in all rest terms in this section. This approach will also be used in the remaining part of this paper.
Remark 2: No specific assumptions about the particular partial differential equation or about the numerical method used to solve it were made in this section. This was done in order to demonstrate how general the idea, on which the Richardson Extrapolation is based, is. It must be emphasized, however, that in the following part of this paper it will be assumed that (a) equation (1) is solved under the assumptions made in the previous section and (b) the underlying numerical algorithm applied to handle it numerically will always be the second-order Crank-Nicolson scheme. 

3. Error constants of the leading terms of the numerical error for the Crank-Nicolson scheme
Consider formula (2). Following [8], we shall replace the approximations 
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  of the solution of (1). The result is:
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The following theorem can be proved by using this notation:
Theorem 1: The quantity 
[image: image94.wmf][

]

k

,

h

);

t

,

x

(

c

L

5

.

0

n

i

+

 can be written as:

[image: image187.emf](


)


(


)


,


k


O


1


2


z


w


~


2


t


c


)


12


(


1


p


p


1


n


1


n


p


1


n


+


+


+


+


+


-


-


=




 

 

, k O

1 2

z w

~ 2

t c ) 12 (

1 p

p

1 n 1 n

p

1 n

  













Proof: Use Taylor expansions of the functions in two variables involved in (14) around the point
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Theorem 1 ensures that the Crank-Nicolson scheme is a second-order numerical method, which is, of course, well-known. It is much more important that (a) it provides the leading terms of the error of the method and (b) it shows that there are no fourth-order terms in the expression for the numerical error.

4. Order of accuracy of the combination consisting of the Crank-Nicolson scheme and the Richardson Extrapolation

The following theorem holds when the combination of the Crank-Nicolson scheme and the Richardson Extrapolation is used to solve numerically equation (1):

Theorem 2: The combination of the Crank-Nicolson scheme and the Richardson Extrapolation is a fourth-order numerical method.

Proof: Assume that all approximations 
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The major part of the computations during the two small time-steps is based on the use of the following two formulae:
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and
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Let us start with (16). Equality (14) will be obtained when all approximate values in (16) are replaced with the corresponding values of the exact solution. This means that the assertion of Theorem 1, equality (15), holds for the large time-step.

The treatment of the two small time-steps is much more complicated. Combining (17) and (18) leads to the formula:
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Replace all approximate values participating in (19) with the corresponding exact values of the solution. The result is:
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where 
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  is a term which arises because the approximate values in (19) were replaced by exact values.

Expand the first six functions in the right-hand-side of equality (20) around the point 
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Now, the following expression can easily be obtained by 
(a) combining the last six formulae, formulae (21) – (26),

 and 
(b) performing similar transformations as in the proof of Theorem 1:
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Expand the functions that appear in the next six terms in the right-hand-side of (20) around the point 
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. If this is done, then it is clear that transformations that are quite similar to those applied above can be performed to obtain the formula:
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Add (27) to (28). The result is:
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It is necessary now to express all terms in the right-hand-side of (29) by using 
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 . We start with the transformations related to the wind velocity. The following two formulae hold:
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Substitute the right-hand-sides of (30) and (31) in the appropriate places in (29). The result is:
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It is clear that the following two relationships can be written for the expressions containing the differences in the second and the fifth terms in the right-hand-side of (32):
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When the right-hand-sides of (33) and (34) are substituted in (32), it becomes clear that the second and the fifth terms in the latter equality are small; their order is 
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Consider now the expression in the square brackets in the first term in the right-hand-side of (35). It is obvious that the following relations hold:
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The sum of (36) and (37) gives:
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In a similar way, the following relationships can be obtained:
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Substitute the expressions in the right-hand-sides of (38) and (39) and (40) in (35). The result is:
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Since the order of the Crank-Nicolson scheme is 
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, it is clear that the improved by the Richardson Extrapolation approximate solution at time-step 
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 is obtained by 
(a) multiplying the result obtained at the end of the second small time-step by 
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, 
(b) multiplying the result obtained at the end of the large time-step by 
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and 
(c) subtracting the two results obtained in (a) and (b). 
Performing precisely the same operations, the operations (a) –(c), over the expressions containing the local truncation errors will give:
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It is immediately seen that the first six terms in the right-hand-side of (42) vanish. Therefore, the order of accuracy of the combined numerical method (the Crank-Nicolson scheme + the Richardson Extrapolation) is four, which completes the proof of the theorem.

5. Numerical experiments
In this section it will be shown that the following two statements are true: 
(a) if the solution is continuously differentiable up to order two, then the direct application of the Crank-Nicolson scheme gives second-order accuracy 
and 
(b) if the solution is continuously differentiable up to order four, then the combined method consisting of the Crank-Nicolson scheme and the Richardson Extrapolation behaves as a fourth-order numerical algorithm.

Furthermore, we shall also demonstrate the fact that if the above requirements are not satisfied, then neither the direct use of the Crank-Nicolson scheme leads to second-order accuracy nor the combined method based on the combination of the Crank-Nicolson scheme with the Richardson Extrapolation behaves as a fourth-order numerical algorithm.
5.1. Organization of the computations

In all experiments, the starting value of the time-interval will be considered as 
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 o’clock (in the first and the third of experiments it will be measured in seconds, starting from the mid-night). The end value of the time interval is 
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 o’clock on the next day. Thus, the length of the time-interval measured in hours is assumed to be 
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 hours.

In each experiment the first run is performed by using 
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. Ten additional runs are performed after the first one. When a run is finished, both 
[image: image142.wmf]h

 and 
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 are halved (this means that  
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 and 
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  are doubled) and a new run is started. Thus, in the eleventh run we have  
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 and 
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 which means that 
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 systems of linear algebraic equations, each of them containing 
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 equations, are to be solved. 

Note too, that the ratio  
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 is kept constant, i.e. the requirement (6) is satisfied, when the two increments 
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 and 
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 are varied in this way.   

We are mainly interested in the behavior of the numerical error. This error is evaluated at the end of every hour (i.e. 
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 times in each run) and at the grid-points of the coarsest spatial grid, in the following way. Assume that run number 
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.  Then the error made at the end of hour 
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 is calculated by using the following formula:
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[image: image158.wmf]n

~

,

i

~

c

 and 
[image: image159.wmf]exact

n

~

,

i

~

c

 are the calculated value and the exact solution at the end of hour 
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 and at the grid-points of the coarsest grid (i.e., for 
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). In the three experiments the exact solution is known.

The global error made during the computations is estimated by using the following formula:
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It is necessary to point out here that the numerical values of the unknown function, which are improved by the Richardson Extrapolation, see (13), are available only on the coarser spatial grid (4). It is necessary to get appropriate approximations for all values on the finer spatial grid (10). Several devices for obtaining such approximations have been tested in [9]. It was shown there that the application of third-order interpolation polynomials gives best results. This device has been used also in the present work.  

5.2. Construction of a test-problem with steep gradients of the unknown function 

Assume that the spatial and the time intervals are given by
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and consider a wind velocity field defined by
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 Let the initial condition be given by 
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The exact solution of the test-problem, which is defined as above, is:
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The test-problem introduced in this sub-section was run both by using the Crank-Nicolson scheme directly and by applying the combination of this scheme and the Richardson Extrapolation. Numerical results are presented in Table 1.

	
	
	
	Direct Solution
	Richardson Extrapolation

	No.
	NT
	NX
	Error
	Ratio
	Error
	Ratio

	1
	168
	160
	7.373E-01
	-
	1.454E-01
	-

	2
	336
	320
	4.003E-01
	1.842
	1.741E-02
	8.350

	3
	672
	640
	1.254E-01
	3.142
	1.224E-03
	14.220

	4
	1344
	1280
	3.080E-02
	4.135
	7.730E-05
	15.837

	5
	2688
	2560
	7.765E-03
	3.967
	4.841E-06
	15.970

	6
	5376
	5120
	1.954E-03
	3.974
	3.026E-07
	15.999

	7
	10752
	10240
	4.892E-04
	3.994
	1.891E-08
	16.004

	8
	21504
	20480
	1.224E-04
	3.999
	1.181E-09
	16.011

	9
	43008
	40960
	3.059E-05
	4.000
	7.609E-11
	15.519

	10
	86016
	81920
	7.648E-06
	4.000
	9.848E-12
	7.726

	11
	172032
	163840
	1.912E-06
	4.000
	4.966E-12
	1.983


Table 1: Results obtained when the test-problem defined by (45)-(48) is handled directly by the Crank-Nicolson scheme and by using the combination of the Crank-Nicolson scheme and the Richardson Extrapolation. The numerical errors calculated by (43) and (44) are given in the columns under “Error”. In row 
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 the ratios of the errors in this row and in the previous row are given in the columns under “Ratio”.
The following conclusions can be drawn by studying the results presented in Table 1:

· The direct application of the Crank-Nicolson scheme leads to quadratic convergence of the accuracy of the numerical results (i.e. halving the increments 
[image: image165.wmf]h

 and 
[image: image166.wmf]k

 leads to a decrease of the error by a factor of four). This behaviour should be expected according to Theorem 1.

· The combination of the Crank-Nicolson scheme and the Richardson Extrapolation behaves in general as a numerical method of order four (or, in other words, halving the increments 
[image: image167.wmf]h

 and 
[image: image168.wmf]k

 leads to a decrease of the error by a factor of sixteen). This behaviour should also be expected according to Theorem 2.

· At the end of the computations with the combined numerical method (the Crank-Nicolson scheme + the Richardson Extrapolation) the convergence rate deteriorates. Two facts are very important when this happens: (a) the computed solution is already very accurate and (b) the rounding errors start to affect the calculated results.

In Fig. 1 plots are given showing (a) the initial values, (b) the solution in the middle of the time interval (i.e. after 12 hours) and (c) the solution at the end of the time interval for the above test-problem.

Remark 3: A similar test-example was used in [10]. It should also be noted that a very similar advection module is a part of the large-scale air pollution model UNI-DEM ([11], [12]) and the quantities used in (43) – (46) are either the same or very similar to the corresponding quantities in this model. Note too that the values of the unknown function are of the same order of magnitude as the ozone concentrations in the atmosphere when these are measured in (number of molecules) / (cubic centimetre). 

5.3. Construction of an oscillatory test-problem
Define the spatial and time intervals by
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Consider the following wind velocity field:
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Let the initial values be defined by
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Figure 1

The distribution of the ozone concentrations, i.e. the solution of the one-dimensional advection equation defined in Sub-section 5.2: (a) at the beginning of the interval (the upper plot), (b) at the end of the twelfth hour (the plot in the middle) and (c) at the end of the time-interval (the lower plot). 
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The exact solution of the test-problem defined by (49)-(51) is:
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As in Sub-section 5.2, the test-problem introduced above was run both by using the Crank-Nicolson scheme directly and by applying the combination of this scheme and the Richardson Extrapolation. Numerical results are presented in Table 2.

	
	
	
	Direct Solution
	Richardson Extrapolation

	No.
	NT
	NX
	Error
	Ratio
	Error
	Ratio

	1
	168
	160
	7.851E-01
	-
	1.560E-02
	-

	2
	336
	320
	2.160E-01
	3.635
	1.227E-03
	12.713

	3
	672
	640
	5.317E-02
	4.062
	1.072E-04
	11.432

	4
	1344
	1280
	1.327E-02
	4.007
	1.150E-05
	9.333

	5
	2688
	2560
	3.319E-03
	3.997
	1.193E-06
	9.641

	6
	5376
	5120
	8.299E-04
	4.000
	1.478E-07
	8.071

	7
	10752
	10240
	2.075E-04
	4.000
	1.618E-08
	9.136

	8
	21504
	20480
	5.187E-05
	4.000
	1.965E-09
	8.233

	9
	43008
	40960
	1.297E-05
	4.000
	2.387E-10
	8.233

	10
	86016
	81920
	3.242E-06
	4.000
	3.241E-11
	7.365

	11
	172032
	163840
	8.104E-07
	4.000
	1.267E-11
	2.557


Table 2: Results obtained when the test-problem defined by (49)-(51) is handled directly by the Crank-Nicolson scheme and by using the combination of the Crank-Nicolson scheme and the Richardson Extrapolation. The numerical errors calculated by (43) and (44) are given in the columns under “Error”. In row 
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 the ratios of the errors in this row and in the previous row are given in the columns under “Ratio”.
The conclusions, which can be drawn from the results presented in Table 2, are quite similar to those given in Sub-section 5.2. However, for the oscillatory test-problem the actual convergence rate achieved in the runs is less than four (greater than three in the beginning and after that equal to or less than three). It is not very clear what the reason for this behaviour is. Perhaps, the interpolation rule used to improve the values on the finer spatial grid (see Sub-section 5.1 and [9]) is not sufficiently accurate when grid-points near the boundary are treated. Nevertheless, it is clearly seen that the achieved accuracy is nearly the same as the accuracy achieved in the solution of the previous test-problem (compare Table 1 with Table 2).  
In Fig. 2 plots are given showing (a) the initial values, (b) the solution in the middle of the time interval (i.e. after 12 hours) and (c) the solution at the end of the time interval for the test problem studied in this sub-section. 

5.4. Construction of a test-problem with discontinuities
Assume that the spatial interval, the time-interval and the wind velocity are defined as in Sub-section 5.2 and introduce initial values by
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The exact solution of the test-problem defined as above is given by (48).
As in the previous two sub-sections, the test-problem introduced above was run both by using the Crank-Nicolson scheme directly and by applying the combination of this scheme and the Richardson Extrapolation. Numerical results are presented in Table 3.

Two major conclusions can be drawn from the results presented in Table 3: (a) neither the direct Crank-Nicolson scheme nor the combination of the Crank-Nicolson scheme with the Richardson Extrapolation gives the prescribed by the theory accuracy (orders tow and four, respectively) and (b) also in this case, in the presence of discontinuities, the combination of the Crank-Nicolson scheme and the Richardson Extrapolation is considerably more accurate than the direct Crank-Nicolson scheme.  

In Fig. 3 plots are given showing (a) the initial values, (b) the solution in the middle of the time interval (i.e. after 12 hours) and (c) the solution at the end of the time interval for the test problem studied in this sub-section.
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Figure 2

The solution of the one-dimensional advection equation defined in Sub-section 5.3 is drawn (a) at the beginning of the interval (the upper plot), (b) at the end of the twelfth hour (the plot in the middle) and (c) at the end of the time-interval (the lower plot). 

	
	
	
	Direct Solution
	Richardson Extrapolation

	No.
	NT
	NX
	Error
	Ratio
	Error
	Ratio

	1
	168
	160
	1.353E-01
	-
	4.978E-02
	-

	2
	336
	320
	7.687E-02
	1.760
	2.761E-02
	1.803

	3
	672
	640
	4.424E-02
	1.737
	1.551E-02
	1.780

	4
	1344
	1280
	2.555E-02
	1.732
	8.570E-03
	1.810

	5
	2688
	2560
	1.636E-02
	1.561
	4.590E-03
	1.867

	6
	5376
	5120
	1.051E-02
	1.552
	2.318E-03
	1.980

	7
	10752
	10240
	5.551E-03
	1.899
	1.188E-03
	1.951

	8
	21504
	20480
	2.921E-03
	1.900
	6.575E-04
	1.807

	9
	43008
	40960
	2.644E-03
	1.105
	2.379E-04
	2.746

	10
	86016
	81920
	1.619E-03
	1.633
	1.501E-04
	1.585

	11
	172032
	163840
	1.145E-03
	1.414
	2.787E-05
	4.941


Table 3: Results obtained when the test-problem defined in Sub-section 5.4 is handled directly by the Crank-Nicolson scheme and by using the combination of the Crank-Nicolson scheme and the Richardson Extrapolation. The numerical errors calculated by (43) and (44) are given in the columns under “Error”. In row 
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 the ratios of the errors in this row and in the previous row are given in the columns under “Ratio”.
6. Concluding remarks

Several conclusions can be drawn by using the theorems proved in Section 3 and Section 4 as well as the numerical results presented in Section 6.

The most important conclusion is related to the accuracy of the computed results. The accuracy can be improved considerably if the Crank-Nicolson scheme is combined with the Richardson Extrapolation. However, this effect will be achieved only when the problem is sufficiently smooth (i.e. the solution is continuously differentiable up to order four).

It is highly desirable to investigate carefully the performance of the combined method in the cases where 

(a) some derivatives of the solution are discontinuous, 

(b) the solution is highly oscillatory 

and 

(c) the problem is stiff (which will normally cause stability problems). 
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Figure 3
The solution of the one-dimensional advection equation defined in Sub-section 5.4 is drawn (a) at the beginning of the interval (the upper plot), (b) at the end of the twelfth hour (the plot in the middle) and (c) at the end of the time-interval (the lower plot). 

These important topics will be studied in the near future.

Some assumptions were made in order to prove the two theorems. It is worthwhile to investigate carefully the possibilities for removing these assumptions or for relaxing them.
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