
Formation of Liesegang patterns in an electric field

István Lagzi
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Evolution of Liesegang patterns in an electric field was studied experimentally in the AgNO3/K2Cr2O7/gelatine
system. The distance of the last (nth) band as a function of their appearance time can be described by the
equation Xn ¼ c1t

1/2+ c2t+ c3 . A numerical model, based on Ostwald ’s supersaturation theory, predicted the
same functional law. Experiments showed that the ratio of the distances of two consecutive rings, the spacing
coefficient, decreases with increasing electric field strength and this behaviour was also reproduced by the
numerical model.

Introduction

Growth of periodically banded precipitates in gels, called the
Liesegang phenomenon,1 is a well-known example of reac-
tion–diffusion systems. Several numerical models have been
developed to describe the Liesegang phenomenon.2–8 Liese-
gang patterns have four significant empirical regularities (the
spacing law,9 the time law,10 the width law11 and the Mata-
lon–Packter law12). The spacing law is Xn+1/Xn ¼ P, where
Xn and Xn+1 are the positions of the nth and (n+1)th bands
measured from the gel surface, respectively, and P is the so-
called spacing coefficient. The time law is Xn ¼ c1tn

1/2+ c2 ,
where tn is the time of appearance of the nth band and c1
and c2 are constants.
The precipitates are formed by reactions of ions, therefore

an electric field is expected to have a significant effect on the
formation of Liesegang rings. The first such experiments were
carried out in the 1920s.13–15 Recently, Sharbaugh and Shar-
baugh16 studied experimentally the effect of an electric field
on Liesegang bands in the CuSO4/Na2CrO4 system in silica
gel. They applied a series of voltages from �2.6 V to 45 V
and observed that rings do not form if the voltage is 5 V or
higher. Using 3.8 V, the formation of rings can be accelerated
by a factor of four, compared to the electric-field-free situa-
tion. Growth of the precipitation followed a square root
dependence on time at 0 V and accelerated by increasing the
voltage. At 22.5 V and 45 V, it was linear in time. Das et al.
studied the influence of an electric field on the formation of
1D,17 and 2D18 Liesegang rings in the KI/HgCl2 system in
agar gel. Sultan and Halabieh19 also investigated the effect of
varying field strength on front propagation in the NH4OH/
CoCl2 system in gelatine gel. They found that the dependence
of pattern formation velocity on field strength could be charac-
terized by the function Xn ¼ c1tn

1/2+ c2tn+ c3 . They observed
that the spacing coefficient increases with increasing field
strength. No theoretical model was given in their paper.
The aim of the present work is to study the formation of Lie-

segang patterns under the influence of DC electric field in
another chemical reaction, the AgNO3/K2Cr2O7 system in
gelatine. Field strength was varied between �12.0 V m�1 to
+18.0 V m�1 and the results were qualitatively reproduced
by numerical simulations.

Experimental

The gel that contained the inner electrolyte K2Cr2O7 was pre-
pared by adding 9.50 g gelatine (Reanal) to 50 mL of 0.0036 M
K2Cr2O7 (Reanal) solution and heating to 65–75 �C. The mix-
ture was continuously stirred and after complete dissolution of
the gelatine, the solution was poured into glass tubes of dia-
meter 6 mm and length 19.0 cm. The tubes were allowed to
cool to room temperature and experiments were performed
at that temperature (23� 2 �C). The tubes were placed hori-
zontally and the right and left ends of the gel column were
placed in contact with a solution of K2Cr2O7 (0.0036 M) and
a solution of AgNO3 (Reanal, 5.70 wt.%), respectively. The sil-
ver and platinum electrodes were placed into AgNO3 and
K2Cr2O7 solutions, respectively. The electrodes were con-
nected to a power supply (Elektroflex EF 1307) that main-
tained constant voltage.The formation of precipitate bands
was monitored by a monochrome CCD camera (Panasonic
WV-BP310/G), connected to a computer-controlled imaging
system, using diffuse light from a halogen lamp as a light
source. The system was illuminated at 90� and the camera
recorded the light reflected from the colloid particles.

Numerical studies

A numerical model, based on Ostwald’s supersaturation the-
ory,20 was elaborated to simulate the effect of DC electric field
on the Liesegang phenomenon. It was developed from a model
of Büki et al.5 for the formation of 1D Liesegang patterns.
A chemical equation of a simple precipitation reaction is

Aþ aqð Þ þ B� aqð Þ ! AB sð Þ

where A+(aq) and B�(aq) are the ionic species and AB(s) is the
precipitated product. Under the influence of electric field the
1D Liesegang system can be described by the following equa-
tions:

@a
@t

¼ Da
@2a
@x2

� zae
@a
@x

� dðL� abÞ ð1aÞ
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@b
@t

¼ Db
@2b
@x2

� zbe
@b
@x

� dðL� abÞ ð1bÞ

@N

@t
¼ dðL� abÞ; ð1cÞ

where a and b are the dimensionless concentrations, Da and Db

are the dimensionless diffusion coefficients, za and zb are the
charges of ions A+(aq) and B�(aq), respectively. The para-
meter e is the dimensionless electric field strength, N is the
dimensionless amount of precipitate product AB(s), t is the
dimensionless time and x is the dimensionless length. The func-
tion d is defined by the following equations: if N ¼ 0 (there is
no precipitate at the grid point)

dðL� abÞ ¼ 0 if ab < Ks

dðL� abÞ ¼ dC if ab � Ks; ð2Þ

if N 6¼ 0 (there is some precipitate at the grid point)

dðL� abÞ ¼ 0 if ab < L

dðL� abÞ ¼ dC if ab � L; ð3Þ

where

dC ¼ 0:5ððaþ bÞ � ððaþ bÞ2 � 4ðab� LÞÞ1=2Þ; ð4Þ

L is the precipitation product and Ks is the nucleation pro-
duct.5 The precipitate growth does not continue if N reaches
a maximal value at the grid point.
Partial differential eqns. (1) were solved numerically using an

explicit Euler method on a 2000-node grid with no-flux bound-
ary conditions. The following parameter set was used in the
simulation: Da ¼ 0.4, Db ¼ 0.4, L ¼ 0.10, Ks ¼ 0.11, za ¼ 1,
zb ¼ �1 and Nmax ¼ 5.0. The parameter Nmax is the maximum
amount of precipitate that can be formed at any point. The fol-
lowing initial conditions for the concentrations were used:

aoðt ¼ 0; xÞ ¼ 1 if x < 800

aoðt ¼ 0; xÞ ¼ 0 if x � 800

boðt ¼ 0; xÞ ¼ 0 if x < 800

boðt ¼ 0; xÞ ¼ 1 if x � 800:

The grid spacing and the time step were Dx ¼ 0.8 and
Dt ¼ 0.05, respectively.

Results and discussions

Experimental results for the time dependence of the formation
of precipitate zones are shown in Fig. 1. Compared to the zero
electric field case (middle picture), for the case of E ¼ +12.0 V
m�1 the reaction front moves faster, while using opposite elec-
tric field (E ¼ �12.0 V m�1) the formation of the precipitation
rings is slower. The morphology of precipitate zones is differ-
ent for the case of negative electric field strength. The zones
have leftward convexity in space, they are in a colloidal state
and the thin layers of precipitate product are within these
zones (see the black lines within the white stripes in the bottom
picture). Spacing coefficients for each ring pair were deter-
mined from the pictures and the average coefficients are given
in Table 1. The values show that upon increasing electric field
strength the average spacing coefficient decreases. Fig. 2
demonstrates the evolution of bands with time. In the absence
of an electric field, the location of the nth ring is a linear func-
tion of the square root of time. For the case of any field
strength, the kinetics of ring formation can be described very
accurately by the function Xn ¼ a1t

1/2+ a2t+ a3 , where a1 ,
a2 , a3 are appropriate constants thus reproducing the results
of Sultan and Halabieh.19

The numerical model exhibits all the qualitative features of
the experiments. Fig. 3 provides the results of numerical simu-
lations similarly to Fig. 1. The qualitative features of the two
figures are identical. Appearance of the last ring as a function
of time can also be described well by function xn ¼ b1t

1/2

+ b2t+ b3 , where b1 , b2 , and b3 are fitted constants (Fig. 4).
Table 2 shows the average spacing coefficient determined

from the simulation results, as a function of the electric field
strength. In accordance with the experimental results, the
numerical model reproduces well the trend that the spacing
coefficient decreases with increasing field strength.

Fig. 1 CCD camera records of the evolution of 1D Liesegang pat-
terns in various electric fields: E ¼ 12.0 V m�1 (top), E ¼ 0 V m�1

(middle) and E ¼ �12.0 V m�1 (bottom). Black domains represent
either a homogenous phase or a solid phase of precipitated product.
The white territory represents a colloid phase.

Table 1 Variation of average spacing coefficient with electric field

strength in experiments. The error limits refer to the 90% confidence

level

E/V m�1 P̄exp

18.0 1.041� 0.019

12.0 1.075� 0.038

0 1.106� 0.014

�12.0 1.144� 0.037

Fig. 2 Points show the distance of Liesegang rings, measured from
the gel surface, as a function of the square root of formation time.
The solid line represents the fitted linear curve for the electric-field-free
case.The dotted lines represent the Xn ¼ a1t

1/2+ a2t+ a3 fitted curves
for electric fields of various strengths.
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Conclusions

The migration distance of ions without an electric field has a
square root of time dependence. For the case of any field
strength, the migration distance can be characterized by the
function Xn ¼ c1t

1/2+ c2t+ c3 . For the case of large field
strength at large times Xn is an almost linear function of the
square root of time (see Fig. 2 for E ¼ 18.0 V m�1). Our
experiments demonstrated, that in the AgNO3/K2Cr2O7/gela-
tine system the formation of Liesegang patterns can also be
described very accurately by such a function of time for the
range of electric field strength �12.0 V m�1 to +18.0 V m�1.
Processing the CCD camera recordings showed that the spa-
cing coefficient decreases with increasing field strength in this
system. This observation is just the opposite result of that
found by Sultan and Halabieh19 in the NH4OH/CoCl2/gela-
tine system. This deviation can be explained by the facts that
in their system the cation (Co2+) is present, while in the
AgNO3/K2Cr2O7/gelatine system anion (Cr2O7

2�) is present

in the gel, and by assuming that precipitation and then com-
plex formation of Co(OH)2(s) occurs in excess of NH4OH. A
numerical model, based on Ostwald’s supersaturation theory,
predicted the functional time dependence obtained above
and reproduced also the decrease in the spacing coefficient with
increasing field strength. This is the first numerical model that
simulates the effect of electric field on the formation of Liese-
gang patterns.
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Fig. 3 Results of numerical simulations of 1D Liesegang patterns in
various electric fields: e ¼ 0.003 (top), e ¼ 0 (middle) and e ¼ �0.003
(bottom). The white stripes represent the solid phase of the precipi-
tated product.

Fig. 4 Time dependence of the distance of the last band in the 1D
numerical Liesegang model. Points show the distance of the Liesegang
rings from the gel surface as a function of the square root of the for-
mation time. The solid line represents the fitted linear curve for the
electric-field-free case. The dotted lines represent the xn ¼ b1t

1/2

+ b2t+ b3 fitted curves for electric fields of various strengths.

Table 2 Variation of average spacing coefficient with electric field

strength in numerical simulations

e P̄num

0.002 1.247

0.001 1.258

0.0005 1.267

0.00025 1.274

0 1.284

�0.00025 1.292

�0.0005 1.300

�0.001 1.315
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