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Evolution of Liesegang patterns in an external electric field was studied numerically using a discrete stochastic
model and by real experiments. In the stochastic model the diffusion was described by a Brownian random walk
of discrete particles. The precipitation reaction was regarded to be a stochastic process as well, and its
description was based on Ostwald’s supersaturation theory. Our real experiments and the results of this
stochastic approach have shown a good agreement. On the basis of our results we have proposed an
extended form of the width law, which takes into account the effect of constant electric field.

Introduction

The first rhythmic precipitation patterns were observed and
studied by R. E. Liesegang in 1896.1 When an electrolyte
(called the outer electrolyte) diffuses into a gel matrix, which
contains another electrolyte (called the inner electrolyte), the
precipitation reaction between them produces a quasiperiodic
precipitate distribution.
Several models and theories have been developed in order to

describe this so-called Liesegang phenomenon2–9 which has
four empirical regularities (the spacing law,10 the time law,11

the width law12–14 and the Matalon–Packter law15,16). Accord-
ing to the spacing law Xn+1/Xn approaches a constant Psp for
large enough values of n, where Xn and Xn+1 are the positions
of the nth and (n+1)th bands measured from the junction
point of the two electrolytes and Psp is the so-called spacing
coefficient. The time law makes connection between the time
elapsed until the formation of the nth zone (tn), and its posi-
tion: Xn ¼ aot

1=2
n + co , where ao , co are constants. This is an

immediate consequence of the diffusion process. According
to the width law wn/Xa

n, where wn is the width of the nth
band. Experimental results13 and a deterministic simulation17

suggest that the exponent a is close to one. However, the cellu-
lar automata model of Chopard et al. resulted in a values
that fall into the range 0.5–0.618,19 and similar values have
been found by Izsák and Lagzi20 using a different stochastic
approach.
Most of the precipitates in Liesegang experiments are formed

by ions, therefore an electric field is expected to have significant
effect on the spatiotemporal evolution of these patterns.
The first such experiments were carried out in the twenties of

the last century.21–23 Recently, Sharbaugh and Sharbaugh24

performed such experiments with the CuSO4/Na2CrO4 system
in silica gel. Das et al. performed similar studies in 1D25 and
2D26 with the KI/HgCl2 system in agar gel. Sultan and Hala-
bieh,27 and Sultan28 applied the NH4OH/CoCl2 system in
gelatin gel, while Sultan and Panjarian29 studied the NaOH/
Cr(NO3)3 reaction in PVA gel in 2D. Finally Lagzi has recently
studied the influence of an electric field on the AgNO3/
K2Cr2O7 system in gelatine.30

The basic consequence of this earlier work was that the velo-
city of propagation of the reaction front can be characterized
by the following function Xn ¼ at1=2n + btn+ c, where a, b
and c are constants. At the same time the spacing coefficient
Psp decreases with field strength.30

In a recent paper an extended form of the deterministic
model proposed by Büki et al.5 has been developed in accor-
dance with external field effects. This numerical model was
based on Ostwald’s supersaturation theory,31 and reproduced
successfully the experimentally observed time dependence
and variation of spacing coefficient with the field strength.
Al-Ghoul and Sultan32 studied recently the redissolution of

precipitate in an electric field, however they used the model of
Polezhaev and Müller4 as a basis.
Until now, neither experimental nor numerical studies were

devoted to the investigation of the width law in an electric
field.
In the ‘‘classical ’’ deterministic models of Liesegang pat-

terning the stochastic effects like fluctuations in the concentra-
tion distributions are generally ignored. At the same time there
are some phenomena that are usually attributed to the exis-
tence of such randomizing impacts.33,34 In the recent literature
one can find only a few mathematical models that incorporate
such stochastic effects,18,19,20,35 but none of them takes into
account the effect of an external electric field.
In the present paper we provide a stochastic numerical

approach to describe such a situation. In order to validate
the model we have performed some real experiments as well,
studying the effect of the electric field on the width law.

Experimental

The gel was prepared by adding 9.50 g gelatine (Reanal) to 250
mL of 0.0036 M K2Cr2O7 (Reanal) solution. The mixture was
heated to 65–75 �C and stirred continuously. After complete
dissolution of the gelatine the solution was poured into glass
tubes of diameter 6 mm and length 19.0 cm. The tubes were
then allowed to cool to room temperature (23� 2 �C). All
experiments were carried out without thermostatic control.
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The tubes were placed horizontally and the right and left ends
of the gel column were brought into contact with a solution of
K2Cr2O7 (0.0036 M) and a solution of AgNO3 (Reanal, 5.70
w/w %). Into these solutions silver and platinum electrodes
were placed, and were connected to a power supply (Elektro-
flex EF 1307) by which we have maintained potentiostatic
polarization.
The formation of precipitate bands was monitored by a

CCD camera (Panasonic WV-BP310/G), connected to a com-
puter-controlled imaging system. The tubes were properly illu-
minated in order that the video system could record the light
reflected from the colloid particles.30 The electric field strength
(E) was varied between �12 V m�1 and 18 V m�1.

The stochastic model

The stochastic model incorporates a simple chemical reaction
between two electrolytes

AþðaqÞ þ B�ðaqÞ ! ABðsÞ;

where A+(aq) and B�(aq) are the ionic species and AB(s) is the
precipitate. The space is discretized into N small segments
(‘‘boxes ’’), which means that the overall state of the system
can always be described by three state vectors MA(t), MB(t)
and MAB(t), of length N. The ith component of a vector con-
tains the number of the corresponding particles at the given
segment at time t.
An operator F was defined in order to describe the spatio-

temporal evolution of the pattern over a time step h. This
operator must account for the joint effect of diffusion, ionic
migration and precipitation reaction. Formally, these can be
described by the following equation:

FðMA½i�ðtÞ; MB½i�ðtÞ; MAB½i�ðtÞÞ ¼ ðMA½i�ðtþ hÞ;
MB½i�ðtþ hÞ; MAB½i�ðtþ hÞÞ:

In stochastic models diffusion of the electrolytes is usually
described by a discrete Brownian motion. However, we wanted
to handle diffusion and migration of ions as a whole, therefore
we have applied a shifted normal distribution function N(m,
s). Here m corresponds to the advection, while s describes
the extent of the diffusion.
First, we describe the case which is free of ionic migration.

(In the following we will apply the same discrete approach
and the same notions as in our previous paper20.) In such a dis-
crete description we can treat only discrete positions and tran-
sitions. At the same time, movement of particles in an
ensemble is spatially continuous, which means that we have
to apply a mapping between the continuous distribution of
displacements and the discrete description.
In the discrete model displacements of particles between the

�0.5 and 0.5 neighborhood of their actual position correspond
to ‘‘ step ¼ 0’’, that is, they will rest at the same segment. Simi-
larly, particles with displacements between �0.5 and �1.5
are mapped to the segment to the left of the actual one
(‘‘ step ¼ �1’’), while those between +0.5 and +1.5 will go
to the position to the right of the actual position.
In our model we have allowed five steps: �2, �1, 0, 1, 2.

Choosing the standard normal distribution (N(0, 1)) with the
density function

FðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�
x2

2

we obtain the following transition probabilities:

p2 ¼ Pðstep ¼ 2Þ ¼ p�2 ¼ Pðstep ¼ �2Þ

¼
Z�1:5

�1

FðxÞdx � 0:0668;

p1 ¼ Pðstep ¼ 1Þ ¼ p�1 ¼ Pðstep ¼ �1Þ

¼
Z�0:5

�1:5

FðxÞdx � 0:2417;

p0 ¼ Pðstep ¼ 0Þ ¼
Z0:5

�0:5

FðxÞdx � 0:383:

Generally, we denote with p[i][ j ] the probability that a par-
ticle moves from the ith segment to the jth one.
We model the effect of the homogeneous electric field by

modifying these transition probabilities (P into Pe) as follows.
In the real experiments the transport number of the outer elec-
trolyte is much higher than that of the inner one. Therefore it
has been supposed that the external field influences only the
transport of the electrolyte coming from outside. This means
that we had to modify only the transition probabilities of A
particles.
If the electric field promotes the movement of the reaction

front (‘‘positive field ’’) we push every A particle to the right
with probability e+ and leave it in its original position with
probability 1� e+ . e+ is a measure of the electric field strength.
In smmary, the transition probabilities of A particles are given
by the following equations:

Peþðstep ¼ 1Þ ¼ Pðstep ¼ 0Þeþ þ Pðstep ¼ 1Þð1� eþÞ
¼ p0eþ þ p1ð1� eþÞ;

Pe+(step ¼ 0) ¼ p�1e++ p0(1� e+),
Pe+(step ¼ �1) ¼ p�2e++ p�1(1� e+),
Pe+(step ¼ �2) ¼ p�2(1� e+),
Pe+(step ¼ 2) ¼ p1e++ p2 .

The case e+ ¼ 0 corresponds to the absence of an electric
field.
Similarly, if the electric field retards the diffusion of the outer

electrolyte A (‘‘negative field ’’), we modify the transition prob-
abilities as follows:

Pe�(step ¼ 1) ¼ p2e�+ p1(1� e�),
Pe�(step ¼ 0) ¼ p1e�+ p0(1� e�),
Pe�(step ¼ �1) ¼ p0e�+ p�1(1� e�),
Pe�(step ¼ �2) ¼ p�1e�+ p�2 ,
Pe�(step ¼ 2) ¼ p2(1� e�),

where e� again characterizes the electric field strength. We
assumed that the precipitate does not diffuse. The precipitation
reaction was modeled by Ostwald’s supersaturation theory31

the basic idea of which is that precipitation can take place only
if the local concentration product of the electrolytes reaches
a certain threshold (nucleation product). However, after the
formation of the first crystals the product of the reaction
promotes the further process and the mentioned threshold
value falls back to the thermodynamic solubility product.5

In our discrete model, we treat particle numbers instead of
concentrations. During the calculation of their actual values
we have taken into account all the particles, that reside or go
through a given segment. These summed up particle numbers
are denoted by SUMA[i](t) and SUMB[i](t). The originality
of our approach lies in that, while in the ‘‘classical ’’ approach
only ‘‘point concentrations ’’ (MA[i](t) and MB[i](t)) are used
to calculate the reaction term, we use these generalized concen-
trations. This generalization makes it possible to take into
account some stochastic effects.
In the simulations we calculated the reaction term by the fol-

lowing algorithm. If MAB[i](t) was 0 (there is no precipitate at
the ith segment), a deterministic approach would result in the
following amount of precipitated material:

D½i�ðtÞ ¼ d½i�ðtÞYðSUMA½i�ðtÞSUMB½i�ðtÞ � KÞ:
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At the same time if MAB[i] 6¼ 0, then

D½i�ðtÞ ¼ d½i�ðtÞYðSUMA½i�ðtÞSUMB½i�ðtÞ � LÞ;

where L is the solubility product, K is the nucleation product,
Y is the Heaviside step function, and d[i](t) denotes the preci-
pitated amount. For an AB type precipitate this latter can be
calculated based on the following algebraic equation:5,36

d½i�ðtÞ ¼ 0:5ððSUMA½i�ðtÞ þ SUMB½i�ðtÞÞ
� ½ðSUMA½i�ðtÞ þ SUMB½i�ðtÞÞ2

� 4ðSUMA½i�ðtÞSUMB½i�ðtÞ � LÞ�
1
2Þ:

Formation of the precipitate stops wherever MAB[i] reaches
a maximal value (MAB,max).
The reaction probability – the probability that a given A par-

ticle transforms into precipitate – is given by the ratio
qA[i](t) ¼ D[i](t)/SUMA[i](t). Certainly B particles have a simi-
lar value qB . Not all particles (A and B) that were taken into
account during the calculation of SUMA[i](t) and SUMB[i](t)
will be transformed into precipitate in one time step. The prob-
ability of this event can be calculated as 1� qA[i](t). According
to the precipitation reaction we have to modify the transition
probabilities. If j� i� k then the probability that a given parti-
cle A or B, which moves from the jth segment to kth one, does
not transform into precipitate can be calculated as the productY

j�i�k

ð1� qA½i�ðtÞÞ and
Y
j�i�k

ð1� qB½i�ðtÞÞ:

In this way the modified transition probabilities (p*e[ j ][k]
and p*[ j ][k]) will be

p�e ½ j�½k� ¼ pe½ j�½k�
Y
j�i�k

ð1� qA½i�ðtÞÞ;

p�½ j�½k� ¼ p½ j�½k�
Y
j�i�k

ð1� qB½i�ðtÞÞ:

Practically, for A particles in the jth segment we created dis-
crete intervals in [0,1] of length p*e[ j ][1], p*e[ j ][2],. . .p*e[ j ][N]
and for each of the particles a random number RND in
[0,1]. If this fell into the interval corresponding to p*e[ j ][k] then
we pushed the particle into the kth segment. Anyway, if none
of the intervals covered RND, we transformed the particle into
precipitate. We proceed similarly for B particles.
The following parameter set was used in the simulations:

K ¼ 1400, L ¼ 300, MAB,max ¼ 1000 and N ¼ 400. Para-
meters e+ and e� were varied between 0 and 0.01. Initial values
were MB[i](0) ¼ 100, MAB[i](0) ¼ 0 and MA[i](0) ¼ 0, while
MA[1](t) was held at 100 in each time step. The last condition
ensures the continuous influx of A particles into the reaction
space. The process was simulated over 60,000 time steps.

Results and discussions

Fig. 1 shows two Liesegang patterns formed in the presence
and absence of external electric field. It can be clearly seen that
migration of the outer electrolyte is faster in case of a ‘‘positive
field ’’ than in the absence of any external agitation. Therefore
the distance of the last band measured from the gel surface
increases.
The thickness of the zones decreases when the strength of

the external field is increased. The width law for various field
strengths is shown in Fig. 2. The results suggest that the width
law wn/Xa

n still holds, but in an electric field a decreases
monotonically with the increasing field strength. The precise
values are given in Table 1.
We investigated the time law, as well. As Fig. 3 shows, in

the absence of any external electric field propagation of the
reaction front follows purely diffusive kinetics (Xn/ t1=2n ,
continuous line).

According to some real experiments24,27,28,30 and determinis-
tic simulations30,32 performed by other authors in the case with
an electric field we expect that the band position shows a quad-
ratic dependence on the square root of time. The amplitude of
band fluctuations decreases both in space and time as the field
strength increases. The effect of random fluctuations becomes
relatively small in the high field region, because the probability
distribution of elementary particle movements becomes more
and more asymmetric.
The effect of the external field on the zone thickness has been

investigated, as well. The results are summarized on Fig. 4.
Values belonging to the first and last two bands were omitted.
The simulation results exhibit considerable uncertainty. Table
2 shows the values of the exponent a for some different cases. It
is interesting to note that in the field free case the results do not
coincide with the experimental ones (Table 1 and refs. 12–14)
nor with the results of the deterministic model.17 All of these
proposed that a should fall very close to unity. We guess that
this marked difference is caused by the relatively small number

Fig. 1 Precipitate patterns in the absence (top) and in the presence of
an electric field (E ¼ 12 V m�1, bottom). Evolution time was 40.82 h in
both cases. Black stripes represent solid precipitate, while the white
areas correspond to colloidal distribution of reaction product.

Fig. 2 Connection of zone thickness and position for various field
strengths (real experiments). The solid line represents the field free
case.

Table 1 Variation of the exponent a of the width law with electric

field strength in real experiments

E/V m�1 a

18.0 0.165

12.0 0.307

0 1.104

�12.0 1.458

4146 Phys. Chem. Chem. Phys., 2003, 5, 4144–4148



of particles. At the same time change of a with the field
strength shows very similar behavior in experiments and simu-
lations. a decreases with increasing field strength in both cases.
Table 3 shows the spacing coefficient (Psp) determined from

the simulations, as a function of the electric field strength. It
was found that the spacing coefficient decreases with increasing
field strength just like in the real experiments.30 Although we
have obtained higher values for this parameter than observed
in reality30 and found in deterministic simulations,30 the trend
of the change has been successfully reproduced. (The spacing
coefficient of the real Liesegang patterns usually falls between
1.04 and 1.4.)
Fig. 5 shows the spatial distribution of the precipitate for

various electric field strengths.

Conclusions

The study presented here focused on the stochastic simulation
of Liesegang patterns in an external electric field. Our intention
was twofold. First, we wanted to see whether this new theore-
tical approach can reproduce our own experimental results,
and those published recently in the literature.24,27,28,30 Second,
we tried to explore the main features of Liesegang patterning,
when it is combined with an external field.
Our results can be summarized as follows. In the presence of

an electric field the position of bands, measured from the junc-
tion point of electrolytes can be characterized by the function
Xn ¼ a(e)t1/2+ b(e)t+ c(e), where a(e), b(e) and c(e) are para-
meters depending on electric field strength. Taking the limit
e+! 0 or e�! 0, results in a(e)! ao , b(e)! 0 and c(e)! co .
In a former paper30 we have shown both by simulations and

real experiments that the spacing coefficient, that describes the
overall structure of a Liesegang pattern decreases with increas-
ing field strength. Results of the present stochastic approach
coincide with this earlier finding.
Finally, we have proposed an extended form of the width

law, which takes into account the effect of constant electric
field. The general form of this scaling law is wn/X

aðeÞ
n , where

a(e) is a decreasing function of its argument. Again this result
is in good agreement with the experimental observations.
All these results show that the stochastic approach presented

here is an effective method to simulate the formation and
dynamics of Liesegang patterns even in an external electric
field.
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Fig. 3 Evolution curves of Liesegang patterns in stochastic simula-
tions. All points represent the average of 30 runs, and correspond to
the distance of a precipitate zone measured from the beginning of the
reaction medium. The solid line corresponds to the field free case, the
dotted ones represent the patterns formed in fields with various
strengths. The error bars correspond to the 95% confidence level.

Fig. 4 Connection of zone thickness and position for various field
strengths (stochastic simulations). Every point represents the average
of 30 different runs.

Table 3 Variation of the spacing coefficient (Psp) with electric field

strength (simulations)

Electric field strength Psp

e+ ¼ 0.01 1.682

e+ ¼ 0.005 1.803

e ¼ 0 1.899

e� ¼ 0.005 1.905

e� ¼ 0.01 2.111

Table 2 Variation of the exponent a of the width law with electric

field strength; results of stochastic simulations

Electric field strength a

e+ ¼ 0.01 0.336

e+ ¼ 0.005 0.435

e ¼ 0 0.480

e� ¼ 0.005 0.489

e� ¼ 0.01 0.590

Fig. 5 Spatial distribution of the precipitate at various electric field
strengths: e+ ¼ 0.01 (top), e ¼ 0 (middle) and e� ¼ 001 (bottom) in
a single simulation.
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36 A. Büki, É. Kárpáti-Smidróczki and M. Zrinyi, Physica A, 1995,

220, 357.

4148 Phys. Chem. Chem. Phys., 2003, 5, 4144–4148


