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Abstract

Simulations of the Liesegang pattern formation are presented that are based on a discrete stochastic model. The

diffusion term was modeled by random walk using transition probabilities referring to one and two steps. A semi-sto-

chastic model of the precipitation process was created, using Ostwald�s supersaturation theory. The calculated variance

of zone positions and formation time is in good accordance with the experimental observations of M€uuller et al.
� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

A well-known example of spatiotemporal pat-

tern formation in reaction–diffusion systems is the
Liesegang phenomenon [1]. The pattern formation

occurs due to a precipitation reaction between a

certain chemical reactant, which diffuses into a gel

matrix and another reactant, which is in the gel.

Mean field models of Liesegang pattern formation

usually focus on the concentrations aðt; xÞ, bðt; xÞ
of the two reactants, where a is the concentration

distribution of the outer electrolyte while b is that
of the inner electrolyte. In these models, chemical

reaction and diffusion of the electrolytes as well as

nucleation and aggregation of the precipitate

particles are taken into account [2–8]. Other ef-

fects, like fluctuation of concentrations, usually

caused by heat anomalies or contaminations
present in the gel, are completely ignored. How-

ever, there are some phenomena that are usually

attributed to the existence of such randomizing

impacts [9–11]. In the literature only a few trials to

incorporate stochastic effects into mathematical

descriptions of Liesegang patterning can be found.

Chopard et al. [12,13] developed and applied a

reaction–diffusion cellular automata model. Antal
et al. [14] have studied a different model based on a

Cahn-Hilliard type phase separation. They used a

kinetic Ising model, which incorporated micro-

scopic fluctuations.

In the present Letter we introduce a new sto-

chastic description of Liesegang pattern formation

in which all of the previously mentioned effects are
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taken into account. Although Liesegang patterns

have four scaling laws, in our Letter only three of

them will be examined. These so-called time,

spacing and width laws are known for a long time

and were formerly extensively studied by many

experimentalists. Let us denote by Xn the position
of the nth precipitate zone measured from the

junction point of electrolytes and by sn the time

elapsed until its formation. According to the time

law of Liesegang patterning, these two quantities

always correspond to the following relation:

Xn ¼ c1s1=2n [15], where c1 is a constant that de-

pends on the experimental conditions. The so-

called spacing law is a similar very simple relation
that describes spatial development of these chem-

ical patterns. If n is large enough then ratio

Xnþ1=Xn approaches a constant value, called spac-

ing coefficient, and usually denoted by P [16]. Note

that according to this scaling law positions of

precipitate zones are members of a geometrical

series which is probably the most surprising regu-

larity of these patterns. Finally, according to the
width law the thickness of zones increases with

their positions, that is wn ¼ c2X a
n , where wn is the

width of the nth band, c2 and a are positive con-

stants [9,17,18].

In this Letter we present numerical simulations

performed with a newly developed discrete model.

Discretization of phase space – that is a micro-

scopic approach of the problem – is an easy way to
construct a graphic model. This way we can even

avoid many difficulties emerging when stochastic

partial differential equations in a continuous phase

space are solved numerically. Application of time

discretization with constant step length makes easy

to program the problem even in this case, although

this type of discretization often emerges also in the

solution of continuous PDEs. Micro-level mathe-
matical or numerical description of reaction–dif-

fusion systems usually means application of a

cellular automata [12,13]. Although this is a usual

approach, it cannot be considered realistic because

of the underlying artificial simplifying assumptions

encoded into rules of the cellular automata. In

contrast to the method applied by Chopard et al.

[12,13] we were able to avoid these artificial con-
straints applied to movement and reaction of

particles, which probably makes our model more

realistic. Although chemical reactions are usually

modeled by Markov chains [20,21], in our case this

approach was not enough, because development of

a Liesegang pattern cannot be described simply by

accounting the number of different particles.

2. The model

We investigate a simple Liesegang patterning.

There is only one chemical reaction between two

dissolved electrolytes according to reaction:

AðaqÞ þ BðaqÞ ! ABðsÞ. In the following, AðaqÞ
will denote the outer while BðaqÞ the inner elec-
trolyte. ABðsÞ is the precipitate, which contains

equal amounts of the two reactants. However,

there are more complex pattern evolutions in case

of redissolution of the precipitate due to complex

formation [22–24]. In a continuous model of this

system, the phase space is a stage with a given

precipitate distribution function. According to

our method, this space is discretized into N small
segments in which values of the distribution

function are represented by particle numbers.

Thus, coordinates of the reaction space corre-

spond to a set of positive integers f1; 2; . . . ;Ng,
while characteristics of the system can be de-

scribed with the state vector MAðtÞ (MBðtÞ;MABðtÞ,
respectively) of length N at any time, where the

ith component of a vector i.e., MAðtÞ½i	 corre-
sponds to the number of A particles at time t at
the ith space position.

In order to describe evolution of the chemical

pattern, we have to define an operator F that

contains joint effect of diffusion and precipitation

reaction, and transforms distribution function in

every time step in the proper way. Formally the

task to be performed can be described by the fol-
lowing equations:

F : ½RN 	3 ! ½RN 	3 such that

F ðMAðtÞ;MBðtÞ;MABðtÞÞ
¼ ðMAðt þ hÞ;MBðt þ hÞ;MABðt þ hÞÞ;

where h is the length of a time step.

The diffusion term has been modeled by random
walk [21] using controllable parameters. This

process is defined as product DAMAðtÞ, where DA is
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a transition probability matrix [20,21] corre-

sponding to species A. Matrix element DA½i	½j	
gives the probability of the passage that a particle

residing at position i moves to position j within

one time step. Generally most of the particles re-

siding at a given position do not move at all. They
are described by zero step. Certainly diffusive

movement of the inner electrolyte can be described

by a similar operator equation with a different

diffusion matrix: in the same way FdMBðtÞ ¼
DBMBðtÞ. However, in our simulations we applied

only one diffusion matrix, that is diffusion con-

stants of the two electrolytes were taken to be

equal: DA ¼ DB. We have used two slightly differ-
ent types of diffusion models. In the first type (let

us call it �one-step model�), every particle can jump

only to a neighboring segment, that is the length of

an elementary step can only be 1, )1 or 0. In the

second case (�two-step model�) maximum length of

an elementary step was 2, that is the possible steps

are )2, )1, 0, 1 and 2. If the moving and reacting

species are small (e.g., small molecules or hydrated
ions), their stochastic behavior will correspond to

a simple Brownian motion which is a usual

mathematical model of such processes [21]. A

consequence of the Brownian motion is that

probability of the step length has a normal distri-

bution. Since we permitted only three or five pos-

sible step lengths, we chose the probabilities

according to the density function UðxÞ ¼ 1ffiffiffiffi
2p

p

expf�x2=2g of the standard normal distribution.

In the �one-step model� P ðstep ¼ 1Þ ¼ P ðstep ¼
�1Þ ¼ 0:3085 �

R�0:5

�1 UðxÞdx and Pðstep ¼ 0Þ ¼
0:383 �

R 0:5

�0:5
UðxÞdx. In the �two-step model�

P ðstep ¼ 2Þ ¼ P ðstep ¼ �2Þ ¼ 0:0668 �
R�1:5

�1 UðxÞ
dx, P ðstep ¼ 1Þ ¼ P ðstep ¼ �1Þ ¼ 0:2417 �

R�0:5

�1:5

UðxÞdx and P ðstep ¼ 0Þ ¼ 0:383 �
R 0:5

�0:5
UðxÞdx.

As the reaction product (AB) cannot diffuse in a
gel, DAB is the identity matrix. In real systems,

diffusion of the electrolytes can be time dependent.

Such effect can be caused by some changes in the

environment (e.g., uneven or continuously chang-

ing temperature). Similarly, external fields like

electric potential or different physical properties of

the species can cause nonsymmetric particles

movement. In our approach these effects can be
described by time dependent or nonsymmetric

diffusion matrices.

Description of the precipitation reaction was

deterministic and was modeled by Ostwald�s su-

persaturation theory [19]. First, we computed the

number of particles A and B at every spatial po-

sitions taking into account those entities only that

move across the given segment in the given time
step. Let us denote these concentrations by

SUMA½i	ðtÞ and SUMB½i	ðtÞ. This way we have

supposed that particles can react with each other

even �in-flight�.
If MAB½i	ðtÞ was zero (that is there was not any

precipitate in the ith segment) then

D½i	ðtÞ ¼ d½i	ðtÞHðSUMA½i	ðtÞ�SUMB½i	ðtÞ � KsÞ
and if MAB½i	ðtÞ 6¼ 0 (there is some precipitate in

the ith segment) then

D½i	ðtÞ ¼ d½i	ðtÞHðSUMA½i	ðtÞ�SUMB½i	ðtÞ � LÞ
is the precipitation reaction term [5] and

d½i	ðtÞ ¼ 0:5½ðSUMA½i	ðtÞ þ SUMB½i	ðtÞÞ

� ½ðSUMA½i	ðtÞ þ SUMB½i	ðtÞÞ2

� 4 � ðSUMA½i	ðtÞ � SUMB½i	ðtÞ � LÞ	1=2	

is the amount of precipitate, which can form. Here

L is the solubility product, Ks is the nucleation

product and H is the Heaviside step function. The

basic idea of the supersaturation model is that the

reaction of the electrolytes is preceded by a su-

persaturated state of the system. At a clear region
of the reaction media, precipitation does not start

until the product of the reactant concentrations

reaches Ks. However, if previously formed precip-

itate is present it promotes the process and the

product of the concentrations has to reach only a

lower threshold L. Since the reaction product is a

solid material, it will be trapped by the gel matrix

and remains in the segment where it came to ex-
istence. Growth of the precipitate stops when

MAB½i	 reaches a maximal value (MABmax) in a

spatial segment. Although the above sketched

mechanism is a deterministic model of the reaction

term, the patterning process as a whole will be

stochastic because of the stochastic diffusion

terms.

The stochastic model included the transforma-
tion of particles into precipitate. This effect can be

described by decreasing the number of diffusing
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particles (denoted by SUMA½i	ðtÞ and SUMB½i	ðtÞ)
at positions where precipitate exists and its

amount has not reached the above-mentioned

critical value. Let the probability that a particle

type of A is transformed to precipitate at time t in
the ith segment be qA½i	ðtÞ ¼ D½i	ðtÞ=SUMA½i	ðtÞ.
From a practical point of view the most simple

solution is to incorporate this probability into the

transition probability matrix DA, which cannot

model the disappearance of particles A. It means

that the probability of transition across the ith
segment has to be multiplied by 1� q because

particles A react with probability q and �disappear�
from the reaction–diffusion process. Certainly the
same holds for the internal electrolyte B. Let us

denote these modified transition matrices by DA�
and DB� which contain both the diffusion and the

reaction effects. The �in-flight-reaction� effect

means that the growing zones deplete their sur-

roundings because they act as autocatalytic reac-

tion centers. In the simulation program, stochastic

effects were modeled through application of ran-
dom numbers during multiplication with the

transition probability matrix.

In the simulations the linear extent of the re-

action space was N ¼ 300 and the other parame-

ters had the following values: Ks ¼ 1400, L ¼ 300

and MABmax ¼ 1000. These parameter values were

chosen in accordance with a formerly proposed

deterministic model [5]. No-flux boundary condi-
tions were applied in the simulations. Simulations

were carried out till time step 60000. Initial values

were MB½i	ðt ¼ 0Þ ¼ 100, MAB½i	ðt ¼ 0Þ ¼ 0 and

MA½i	ðt ¼ 0Þ ¼ 0, but MA½1	ðtÞ ¼ 100 at all times.

The last of initial conditions results in continuous

flow of species A into the reaction space.

3. Results and discussion

The presented results are the average of thirty

independent calculations. Fig. 1 shows the verifi-

cation of the time law mentioned in the introduc-

tion. Our results suggest that using any of the two

diffusion models Xn depends linearly on s1=2n which

is in complete agreement with experimental find-
ings. Variance of both the zone positions and the

square root of formation time increases continu-

ously during of development of patterns. These

results coincide with experimental observations of
M€uuller et al. [9–11]. In these works, they investi-

gated the reproducibility of Liesegang patterns

and gave a statistical analysis of measured bands

using Gaussian distribution. They found that the

average value of nth band location with their

width is an increasing function of n. Although it is

not surprising, it is important to note that the two-

step model exhibits smaller average deviations in
all respects than the other one-step description.

Now let us turn to the spacing law. As Fig. 2

Fig. 1. Simulated dependence of the distance of bands (mea-

sured from the top of diffusion column) on the square root of

formation time. The symbols (N) and (j) represent the one-

and two-step models, respectively. The solid and dotted lines

are the fitted linear curves for each case. The spatial and square

root time errors refer to the 95% confidence level.

Fig. 2. Logarithm of the distance of bands (measured from the

top of diffusion column) as a function of band number. Sym-

bols (N) and (j) represent one- and two-step models, respec-

tively.
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shows, dependence of lnðXnÞ on n is almost linear,

that is the spacing law of Liesegang patterning is

reproduced by the model. We have also investi-

gated variations of zone thickness with their po-

sition (see Fig. 3). In this case only the first five

bands instead of all the seven were used, because
development of the last two ones was not com-

plete. Our simulation verified the validity of the

width law proposed by M€uuller et al. [9]. Values of
the exponent a were found to be a¼ 0.458 and

a¼ 0.466 for the one- and two-step models, re-

spectively. These values are very close to those

found by Chopard et al. [12,13] with cellular au-

tomata simulation. They obtained patterns, which

exhibited width exponent a varying between 0.5

and 0.6. However, the experimental observations
[17] and the deterministic model calculations [25]

suggested a linear dependence of wn on Xn. Fig. 4

shows spatial distribution of precipitate in our

stochastic simulations. This picture demonstrates

that results of our model are very similar to regular

Liesegang patterns.

4. Conclusions

An advanced one-dimensional stochastic model

for the description of reaction-diffusion systems

has been developed and applied for the simulation

of periodic precipitate patterns. Diffusion has been

described by Brownian random walk, while the

reaction term was based on Ostwald�s supersatu-
ration theory. This later was extended by sto-

chastic precipitate formation and growth. Results

of both the one- and two-step models show that

this approach is successful for the description of

regular Liesegang patterning as all of the impor-

tant scaling laws of these chemical patterns were

verified.

Fig. 3. Dependence of the width of the bands on their distance

measured from the start of diffusion column for the one- (N)

and two-step (j) models, respectively. Solid and dotted lines

represent the fitted linear curves for one- and two-step models,

respectively. The spatial errors of the width of the bands refer to

the 95% confidence level.

Fig. 4. Spatial distribution of the precipitate corresponding to the one-(top) and the two-step (bottom) models in one independent

simulation.
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