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Formation of 1D Liesegang patterns was studied numerically by assuming precipitation and reversible complex
formation. The Ostwald’s supersaturation model reported by Bu¨ki, Kárpáti-Smidróczki, and Zrı´nyi (BKZ
model) was developed and extended further. The position of the first and last bands measured from the junction
point of the inner and outer electrolytes is linearly proportional to the square root of its formation time for
the different initial concentrations of inner electrolyte (âo). The propagation of patterns along the diffusion
column is slower at higherâo. The correlation between the distance of the first and last bands measured from
the beginning of the diffusion column is strictly linear. The variation of the total number of bands withâo has
a maximum. The presented model reproduces the moving precipitate zones and nonlinear oscillation of the
total number of bands in time due to the complex formation of the precipitate.

1. Introduction

A Liesegang pattern is a typical example of the spatiotemporal
pattern formation of reaction-diffusion systems and the phe-
nomenon has been studied for a long time. Investigation of the
features of the classical Liesegang system1 showed that the
variation of the total number of bands (N) increases monotoni-
cally with time. The regular pattern formation has four
significant empirical regularities (the spacing law,2 the time law,3

the width law4-6 and the Matalon-Packter law7,8). The time
law is Xn ∝ tn1/2, where Xn is the position of thenth band
measured from the junction point of two electrolytes andtn is
the time of appearance of thenth band. This law reflects the
diffusive behavior of the outer electrolyte into a gel.

In several cases precipitate zones can redissolve in excess
invading electrolyte due to the complex formation of precipitate.
This effect causes a propagating precipitate pattern along the
diffusion column. Such experiments were carried out in NaOH/
Cr(NO3)3,9-11 where Cr(OH)3 redissolved in excess OH-

produces [Cr(OH)4]-, and in the KI/HgCl2 system,12 where HgI2
forms [HgI4]2- by redissolution in excess I-. Recently, Sultan
and co-workers presented experimental studies of some features
and characteristics of the NH4OH/CoCl2/gelatine system,13-17

where the formed precipitate Co(OH)2(s) reacts with NH4OH,
yielding [Co(NH3)6]2+. Precipitation and complex formation
produce moving strata bands down the tube and exhibit a
deterministic chaotic variation of the total number of bands in
time. They also found that the positions of the first band (dfb)
and the last band (dlb) as measured from the gel surface both
have a square root dependence in time and that there is a linear
correlation between these two variables.15 The numerical model
of Al-Ghoul and Sultan18,19 contains irreversible complex
formation, whereas reversible complex formation of the pre-
cipitate was not included. They adopted the model of Polezhaev
and Müller20 to describe the Liesegang pattern formation. The
numerical simulation reproduced only some basic aspects of
their experiments and they reported that the simulated correlation
betweendfb anddlb is not perfectly linear.18 In the numerical
study, the motion of the pattern, the nonlinear oscillation ofN

and other features that were demonstrated in the experimental
work14,15 was not investigated.

The aim of this paper is to study all qualitative features of
the precipitation and reversible complex formation scenarios
observed in experiments14,15using numerical simulation meth-
ods.

2. Model

The description of the formation of precipitate used was based
on Ostwald’s supersaturation theory21 as presented by Bu¨ki et
al.22,23 This approach involves two thresholds, one for the
nucleation and one for the autocatalytic precipitate growth.22,23

The nucleation can occur only in a supersaturated state, but when
the nuclei are present, the precipitation process is fast. The
system is normally highly supersaturated and therefore the
precipitation reaction is practically irreversible. The skeleton
mechanism of a simple precipitation and reversible complex
formation is

where A+(aq) and B-(aq) are the ionic species (the outer and
the inner electrolytes, respectively), P(s) is the precipitated
product, D(aq) is the complex former species, and C(aq) is the
complex. Precipitation is faster than the other reaction rates of
the model. We supposed that the complex former species (D(aq))
diffuses into a diffusion column with the outer electrolyte
(A+(aq)), which has same initial concentration as the outer
electrolyte. This assumption differs from that applied by Al-
Ghoul and Sultan.18,19 In their model, the complex former
species (NH4+) is an intermediate, which forms from the
precipitation process, and its initial concentration is assumed
to be zero in the diffusion column. The presented mechanism
(1)-(3) is a possible simplified model of the NH4Cl/AgNO3* Corresponding author. E-mail: lagzi@vuk.chem.elte.hu.

A+(aq)+ B-(aq)f P(s) (1)

P(s)+ D(aq)f C(aq) (2)

C(aq)f P(s)+ D(aq) (3)
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system, where the formed precipitate AgCl reacts with ammonia
producing Ag(NH3)2

+.
The 1D Liesegang system is governed by the following set

of partial differential equations:

whereR, â, γ, andδ are the dimensionless concentrations and
DR, Dâ, Dγ, andDδ are the dimensionless diffusion coefficients
of A+(aq), B-(aq), C(aq), and D(aq), respectively,π is the
dimensionless amount of precipitate product P(s).κ2 andκ3 are
the dimensionless chemical rate constants for reactions (2) and
(3). τ is the dimensionless time,x is the dimensionless length.
The function∆(Ks,L,Râ) is defined by the following equations:

whereL is the precipitation product,Ks is the nucleation product,
θ is the Heaviside step function, andΣP is the amount of the
precipitate, which can be formed. For an AB type precipitate
this can be calculated on the basis of the following algebraic
equation proposed by Bu¨ki et al.:22,23

The precipitate growth does not continue ifπ reaches a maximal
value (πmax) at the grid point. Partial differential equations (4)-
(8) were solved numerically using a forward Euler method with
boundary conditions:

where l is the length of the diffusion column andRo ) δo )
60.0. The following parameter set was used in the simulations:
DR ) Dâ ) Dγ ) Dδ ) 0.4,L ) 0.100,Ks ) 0.101,κ2 ) 1 ×
10-4, κ3 ) 1 × 10-8, l ) 3360, andπmax ) 5.0. The following

initial conditions for the concentrations were used:

whereâo was varied between 0.5 and 10.0 in the simulations.
The grid spacing and the time step were∆x ) 0.8 and∆τ )
0.05, respectively.

3. Results

Figure 1 shows the position of the first and the last bands
measured from the junction point of the inner and outer
electrolytes as a function of the square root of time. The results
suggest that the position of the first and the last bands due to
the formation and reversible dissolution of the bands can be
described with time by the functionXn ) c1τn

1/2 + c2,
respectively; i.e., the time law describes not only the evolution
of the last but also the first bands in time. The width of the
migrating band system (the distance between last and first zones)

∂R
∂τ

) DR
∂

2R
∂x2

- ∆(Ks,L,Râ) (4)

∂â
∂τ

) Dâ
∂

2â
∂x2

- ∆(Ks,L,Râ) (5)

∂γ
∂τ

) Dγ
∂

2γ
∂x2

+ κ2πδ - κ3γ (6)

∂δ
∂τ

) Dδ
∂

2δ
∂x2

- κ2πδ + κ3γ (7)

∂π
∂τ

) ∆(Ks,L,Râ) - κ2πδ + κ3γ (8)

if π ) 0 (there is no precipitate at the grid point)

∆(Ks,L,Râ) ) ΣPθ(Râ - Ks) (9)

if π * 0 (there is some precipitate at the grid point)

∆(Ks,L,Râ) ) ΣPθ(Râ - L) (10)

ΣP ) 0.5((R + â) - ((R + â)2 - 4(Râ - L))1/2) (11)

∂R
∂x|x)l

) ∂â
∂x|x)l

) ∂â
∂x|x)0

) ∂γ
∂x|x)l

) ∂γ
∂x|x)0

) ∂δ
∂x|x)l

) 0
(12)

R|x)0 ) Ro (13)

δ|x)0 ) δo (14)

Figure 1. Variation of the positions of the first and last bands measured
from the junction point of the inner and outer electrolytes with the
square root of time for different values ofâo. The dotted lines represent
the fitted linear curves. The open and filled symbols correspond to last
and first bands, respectively.

Figure 2. Correlation plot of the distance of the last band versus the
first band measured from the junction point of the inner and outer
electrolytes at different values ofâo. The dotted lines represent the
fitted linear curves.

R(τ)0,x) ) Roθ(-x) (15)

â(τ)0,x) ) âoθ(x) (16)

δ(τ)0,x) ) δoθ(-x) (17)

π(τ)0,x) ) γ(τ)0,x) ) 0 (18)
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increases linearly with the square root of time. A band was
considered present if the amount of precipitate at the grid point
was higher than or equal to 0.01 (π g 0.01). The propagation
of patterns along the diffusion column is slower at higherâo.

The plot of the position of the last band (dlb) versus the
position of the first band (dfb) shows a strong linear dependence,
as shown in Figure 2. This is in good agreement with the
experimental results15 and a better correlation between them is
obtained than with the numerical simulation by Al-Ghoul and
Sultan, which was not perfectly linear.18 The spatiotemporal
evolutions of Liesegang patterns are illustrate in Figure 3. The
patterns map demonstrates well the pattern propagation and the
more complex pattern formation behavior in the case ofâo )
6.0. The distribution of precipitate (π) in space is presented in
Figure 4. The amount of the precipitate demonstrates almost
Gaussian characteristics in space. The pattern propagation and
Gaussian distribution are due to the dissolution of bands behind
the pattern (complex formation of the precipitate) and the
formation of new ones by precipitation in front of the pattern.

Table 1 presents the dependence of the total number of bands
(N) on various initial concentrations of the inner electrolyte (âo)
at the same simulation time.N increases to a maximum value
then decreases withâo. This result coincides with the result
reported by Sultan and Sadek.14

The most important and interesting behavior of the precipita-
tion and dissolution of the precipitate systems is the nonlinear
variation of the total number of bands in time. This main feature
was reproduced by the model using reversible complex forma-
tion of the precipitate as displayed in Figure 5. It shows that
the amplitude of the time oscillation in time is higher atâo )
6.0; therefore the nonlinearity is conspicuous in this case.

4. Conclusions
This study focused on the numerical simulation of migrating

Liesegang patterns. The numerical model was based on Ost-

Figure 3. Evolution of 1D Liesegang patterns for variousâo: âo ) 1.0 (bottom),âo ) 6.0 (top). The white lines represent the amount of the
precipitate.

Figure 4. Spatial distribution of amount of precipitate measured from
the junction point of the electrolytes for the two different values ofâo:
âo ) 1.0 (bottom),âo ) 6.0 (top) atτ ) 5 × 105.

Figure 5. Variation of the total number of bands with time for different
values ofâo: âo ) 1.0 (bottom),âo ) 6.0 (top).

TABLE 1: Dependence of the Total Number of Bands (N)
on Initial Concentration âo at τ ) 4 × 105

âo 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
N 31 32 42 40 55 51 50 53 33 22 22
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wald’s supersaturation theory coupled with reversible complex
formation due to the reaction of the precipitate product with a
complexing agent. A different chemical model and different
initial conditions were used than those applied by Al-Ghoul and
Sultan.18,19The model simulations demonstrate all features that
were present experimentally.14,15,17The novel features of nu-
merical simulations are follows:

1. The correlation between the position of the first and last
bands is strongly linear, as was observed experimentally.14,17

2. The spatial distribution of the precipitate exhibits Gaussian
characteristics.

3. The total number of bands increases to a maximum value
and then decreases asâo is increased. This is similar to results
from the experimental work.14

4. The variation of the total number of bands showed
nonlinear oscillation behavior in time.14,15,17
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