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Abstract

Formation of one- and two-dimensional equidistant precipitate patterns due to the coupling of an autocatalytic

chemical front with a precipitation reaction was studied numerically. A simple six-variable model based on a cubic

autocatalytic reaction has been defined and investigated, where the precipitation step contained a diffusive intermediary

species. Simulations show that such a hypothetical reaction–diffusion system can lead to formation of equidistantly

striped or more complex patterns.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Liesegang patterning is an example of periodic

pattern formation in reaction–diffusion systems

[1]. These patterns are produced by a precipitation

reaction behind a moving reaction front. In clas-

sical Liesegang systems position of the last band is
proportional to the square root of time elapsed

until its formation:

Xn / t1=2n ;

where Xn is the distance of the nth precipitate zone

measured from the junction point of the two elec-

trolytes while tn is the time elapsed until appearance
of the nth band [2]. This relation is the time law.

Liesegang patterns usually obey another empirical

scaling law, the so-called spacing law. According to

this for large enough n positions of precipitate

zones are members of a geometrical series, that is

Xnþ1=Xn ¼ 1þ p; if n ! 1;

where ð1þ pÞ is the spacing coefficient [3], value of

which usually falls to the range 0:056 p6 0:4.
Width of the zones follows a similar scaling. Width

of the nth band (wn) is an increasing function of n
according to the following simple relation:

wn / X a
n ;

where a > 0 [4–7].

The first propagating chemical fronts were ob-
served by Luther in the early 1900s [8]. He has

shown that these fronts travel with constant ve-

locity, which depends on a pseudo-first-order rate

constant and the diffusion coefficient of the auto-

catalyst. Recently, various chemical fronts and

pattern formation due to diffusion driven instabil-

ity in such systems were extensively studied [9–13].
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In 1952 Turing [14] reported that the homoge-

nous state of chemical species may lose its stability

if diffusion coefficients of species are different. As a

result classical Turing patterns emerge, which

consist of stationary equidistant spots and stripes

[15–17]. These structures are supposed to appear in
various biological systems.

The second technique to produce equidistant

patterns is the flow-distributed oscillations [18–20].

Kuznetsov et al. and Andresen et al. [21,22] in-

vestigated in these systems the condition for pat-

tern formation using the Brusselator model, while

Kaern and Menzinger [23] have demonstrated ex-

istence of such equidistant structures experimen-
tally.

In the present work we propose a new mecha-

nism based on the coupling of a simple autocalytic

front with a precipitation process, as an alternative

to Liesegang, Turing and FDO patterns.

2. Mathematical formulation of the model

Chemical equations describing a simple cubic

autocatalytic reaction and a precipitation step

coupled with it are the following:

AðaqÞ þ 2BðaqÞ ! 3BðaqÞ þDðaqÞ ð1Þ

DðaqÞ þ EðaqÞ ! CðaqÞ ð2Þ

CðaqÞ ! PðsÞ: ð3Þ
Here A(aq) is the reactant, B(aq) is the autocata-

lyst, D(aq) is the product of the autocatalytic
reaction, which reacts with E(aq) and forms the

intermediate species C(aq). This latter will

transform into precipitate P(s) above a critical

concentration. The system is normally highly su-

persaturated therefore reaction (3) is practically

irreversible.

Dynamics of the system above can be described

by the following reaction–diffusion differential
equations:

oa
os

¼ Dar2a 	 k1ab2; ð4Þ

ob
os

¼ Dbr2b þ k1ab2; ð5Þ

oc
os

¼ Dcr2c þ k2de 	 Wðj2; c; c

Þ 	 j3cp; ð6Þ

od
os

¼ Ddr2d þ k1ab2 	 k2de; ð7Þ

oe
os

¼ Der2e 	 k2de; ð8Þ

op
os

¼ Wðj2; c; c

Þ þ j3cp; ð9Þ

where a, b, c, d and e are the dimensionless con-

centrations of A(aq), B(aq), C(aq), D(aq) and

E(aq), respectively, p is the dimensionless amount

of precipitate P(s). Da, Db, Dc, Dd and De are the

dimensionless diffusion coefficients of the corre-
sponding species. k1, k2, j2 and j3 are dimensionless

rate coefficients of reactions (1)–(3), respec-

tively and s is the dimensionless time. The two

terms in (9) correspond to homogenous nucleation

ðWðj2; c; c
ÞÞ that is followed by autocatalytical

crystal growth ðj3cpÞ. The definition of the func-

tion Wðj2; c; c
Þ in a 1D simulation is the following:

Wðj2; c; c

Þ ¼ j2Hðcðx; sÞ 	 c
Þc ð10Þ

while in 2D

Wðj2; c; c

Þ ¼ j2Hðcðx; y; sÞ 	 c
ÞHðPr 	 rðx; y; sÞÞc:

ð11Þ
Here Pr is the user-defined probability, rðx; y; sÞ is
a random number between 0 and 1, which is in-

dividually generated for every grid point in every

time step while H is the Heaviside step function.

j2Hðc 	 c
Þc is the supersaturation term and

HðPr 	 rÞ is the probabilistic (fluctuating) term. j2

is the rate coefficient of the homogenous nucle-
ation process. Stochastic noise can be switched off

if Pr is chosen to be unity.

Eqs. (4) and (5) describe the evolution of a

simple cubic autocatalytic reaction front. The

subset of our model, which describes formation of

the precipitate, contains a diffusive intermediate

species between the reacting electrolytes and the

final product [7]. Such intermediate species ap-
proaches are often used for description of Liese-

gang patterns [7,24]. When the local concentration

of the intermedier reaches some threshold value

(c
) precipitation takes place. Parallel with this
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concentration c goes to zero wherever some pre-

cipitate already exists.

Eqs. (4)–(9) were solved numerically using an

explicit Euler method with Neumann boundary

conditions. The Laplace operator was discretised

in 2D using a nine-point approximation. In all of
the simulations the following parameter set was

used: Da ¼ Db ¼ Dc ¼ Dd ¼ De ¼ 0:8, k1 ¼ k2 ¼
2:5� 10	1, j2 ¼ j3 ¼ 4:9. Value of c
 was varied

between 0.12 and 0.40, while the initial conditions

were the following:

aðs ¼ 0; x; yÞ ¼ a0Hð10	 xÞ

bðs ¼ 0; x; yÞ ¼ b0Hðx	 10Þ

eðs ¼ 0; x; yÞ ¼ e0Hð10	 xÞ

pðs ¼ 0; x; yÞ ¼ cðs ¼ 0; x; yÞ ¼ dðs ¼ 0; x; yÞ ¼ 0;

(a0 ¼ b0 ¼ e0 ¼ 1:0). Grid spacing was Dh ¼ 0:4
while length of a time step was Ds ¼ 10	3.

3. Results and discussion

Fig. 1 shows the evolution diagram of the one-
dimensional pattern obtained. In case of normal

Liesegang patterning positions of precipitate zones

are members of a geometrical series while move-

ment of the reaction front producing them follows

a purely diffusive kinetics [1–7]. Width of zones

increases with their distance measured from the

junction point of the electrolytes. Although our

system contains a similar reaction front that pro-
duces an immobile reaction product our observa-

tions are markedly different compared to these

patterning trends. In our case formation of the

bands follows a linear scaling in time while their

arrangement is equidistant in space. Thickness of

the bands also becomes constant after a transient

period. Causes of these differences lie in the dif-

ferent dynamics of the systems. In case of Liese-
gang patterning the outer electrolyte can move

only by diffusion. Distance of the reaction–diffu-

sion front measured from the junction point of the

two electrolytes is proportional to the square root

of time. The time law is a direct consequence of

this dynamics.

In our case formation of bands is provoked by

the propagation of an autocatalytic chemical
front, which moves by constant velocity. This

maintains a constant concentration of the outer

electrolyte (D(aq)) behind the front and from dy-

namical point of view roughly corresponds to a

Liesegang experiment performed in an electric field

Fig. 1. Evolution of a one-dimensional pattern (c
 ¼ 0:2). Precipitate zones are represented by white stripes. The first wider zone

corresponds to a transient state of the system. After this thickness and spacing of zones becomes constant which means that evolution

of such a pattern follows a linear scaling both in space and time.
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[25]. In the latter case increase of the strength of

the electric field makes the velocity of migration

constant and causes equidistant patterning. As we

were most interested in the distribution of the final

reaction product we mainly examined the param-

eters, which are directly influencing it. The detailed
numerical study has shown that patterning trends

are highly influenced by the threshold value c
.
Fig. 2 illustrates this dependence for some different

values of it. As can be seen width of the zones

decreases while wavelength of the pattern increases

with increasing values of c
.
Fig. 3 shows results of a 2D stochastic simula-

tion in which formation of the precipitate from

Fig. 2. Change of the spatial distribution of the precipitate in various 1D simulations. Value of c
 was varied at s ¼ 300.

Fig. 3. Two-dimensional stochastic patterns at s ¼ 300 developed from planar initiation. Values of the input parameters:

c
 ¼ 0:2; Pr ¼ 0:0005 (top) and Pr ¼ 0:5 (bottom). The front has travelled from left to right.
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C(aq) was a probabilistic process. B€uuki et al. [26]
applied a similar probabilistic approach in order to

generate two-dimensional stochastic Liesegang

patterns. Practically it means that in every point

where concentration of C(aq) reached the critical

value (c
) precipitation could take place only by a
certain probability (Pr). This causes a more com-

plex patterning dynamics. Distribution of matter

inside the zones becomes non-uniform, which is

due to the stochastic noise applied.

We have proposed a model for the formation of

equidistant and more complex precipitate patterns.

It has been shown by numerical simulations that

coupling of the reaction front of a cubic autoca-
tatytic reaction with a precipitation process can

lead to formation of such chemical patterns. The

precipitation mechanism contained a diffusive in-

termediate species.
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