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Simulation of the Liesegang pattern formation in low concentration gradient is presented using
concentration perturbation in a deterministic model. The precipitation process is based on
ion-product supersaturation theory~Ostwald’s model!. In the classical experiments with high initial
concentration gradients, appearance time and locations of the band formation are well reproducible.
Decreasing initial concentration gradients results in a more stochastic pattern structure; this means
that the reproducibility of the experiments becomes worse. The presented model and the results of
the simulations exhibit the same trend, which were demonstrated and investigated experimentally by
Kai et al. @S. Kai, S. C. Mu¨ller, and J. Ross, J. Phys. Chem.87, 806~1983!# and Kai and Mu¨ller @S.
Kai and S. C. Mu¨ller, Sci. Form1, 9 ~1985!#. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1635354#

I. INTRODUCTION

In some reaction-diffusion systems the precipitate forms
patterns; this fact has been observed and published for the
first time by Liesegang.1 The quasiperiodic precipitation pat-
terns appear due to interdiffusion of the two, initially sepa-
rated electrolytes. One of them is in gel~inner electrolyte!,
the other one~outer electrolyte! diffuses from outside. The
evolution of the bands is highly influenced by the initial
concentration gradient: the concentration of the outer elec-
trolyte determines the distance of the bands~measured from
the junction point of the two electrolytes!. This regularity is
described by the Matalon–Packter law,2,3

p;
1

a0
,

at fixed initial concentrationb0 of the inner electrolyte,
wherea0 denotes that of the outer electrolyte. 11p is the
spacing coefficient: the ratio of the distances of the consecu-
tive bands.4

On the other hand, low initial concentration difference
(D5a02b0) leads to considerable uncertainty, in terms of
the location of bands and of the appearance time. In real
experiments5–7 the authors pointed out that pattern formation
exhibits increasingly stochastic behavior asD approaches to
zero. To interpret their results, they applied statistical analy-
sis by fitting Gaussian functions to the detected bands. In
many cases, the position of the bands far from the gel surface
fluctuated such that the fitting procedure could not be per-
formed. All of these provoked us to choose a stochastic ap-
proach in order to describe the phenomenon. The models,
proposed in the literature, were either microscopic or macro-
scopic. For a general approach of modeling chemical pro-

cesses we refer to Ref. 8. Microscopic~or discrete! models
treat the reacting particles individually both in the diffusion
process and in the reactions. These sophisticated models con-
tain the inherit fluctuation of the system and provide a de-
tailed description of the precipitation process. Therefore,
they give us a true description of the stochastic behavior of
pattern formation.9–12 On the other hand, these models are
realistic only, if a great number of particles are taken and this
requirement leads to high computational cost. Macroscopic
~mean field! models of Liesegang pattern formation focus on
the concentrationsa(t,x), b(t,x) of the outer and the inner
electrolytes, respectively.13–22Although these models are de-
terministic, we can modify them in order to take into consid-
eration some stochastic effects, like fluctuation of
concentrations—usually caused by heat anomalies, inhomo-
geneities of the gel structure or contaminations in the gel.
Accordingly, Antal et al. developed a model based on a
Cahn–Hilliard-type phase separation. They used a kinetic
Ising model, which incorporated microscopic fluctuations.23

The objective of the present study is to perturb the con-
centrations in a certain deterministic model in such a way
that it reflects the increasingly stochastic behavior at low
values ofD. We will explain in the frame of our model the
experimental results of Kaiet al.,5 Kai and Müller,6 and
Müller and Ross,7 and reproduce them numerically.

II. MODEL

The basic processes in systems that show regular Liese-
gang pattern formation are simple. The diffusive reagents
~outer and inner electrolytes! A andB turn into an immobile
precipitateP as

A~aq!1B~aq!→P~s!.

To describe the precipitate formation we have chosen the
deterministic model proposed by Bu¨ki et al.18,19based on the
Ostwald’s supersaturation theory24 ~ion-product supersatura-
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tion theory!. Experiments are usually carried out in a gel
matrix: the role of the gel is to prevent sedimentation of the
precipitate and convection. Therefore, evolution of such sys-
tems in 1D can be described by the following reaction-
diffusion equations—all quantities are dimensionless,

]a

]t
5Da

]2a

]x2 2d~ab,K,L !, ~1a!

]b

]t
5Db

]2b

]x2 2d~ab,K,L !, ~1b!

]p

]t
5d~ab,K,L !, ~1c!

wherea, b, andp are the concentrations of the outer and the
inner electrolyte and the amount of the precipitate depending
on time ~t! and space variable (x). Da and Db denote the
diffusion coefficients of the electrolytes.d(ab,K,L) is the
precipitation reaction term defined as follows:
If p50 ~there is no precipitate!

d~ab,K,L !5kSPQ~ab2K !,

if p.0 ~there is some precipitate!

d~ab,K,L !5kSPQ~ab2L !,

wherek is the rate constant of the precipitation reaction,L is
the solubility product,K is the nucleation product andQ is
the Heaviside step function.SP is the amount of the precipi-
tate which can form, defined as follows~proposed by Bu¨ki
et al.18,19!:

SP5 1
2 @~a1b!2A~a1b!224~ab2L !#.

The basis of the model is that precipitation occurs only if the
product of the concentrations reachesK. However, if previ-
ously formed precipitate is present, it promotes the precipi-
tation process and product of the concentrations has to reach
only a lower thresholdL. In our calculations we did not limit
the amount of the precipitate at any space position. The
above equations~1a!–~1c! are deterministic, but we suppose
that the concentration of both electrolytes consists of two
parts:

a5ā1a8 and b5b̄1b8, ~2!

where ā, b̄ are the average concentrations, whilea8, b8
yield the concentration fluctuations. Variations of fluctua-
tions ]a8/]t and ]b8/]t are usually considered to be zero
since the average effect of these terms for any time interval
is zero. Inserting Eq.~2! into Eqs.~1a!–~1c! gives

]ā

]t
5Da

]2~ ā1a8!

]x2 2d~~ ā1a8!~ b̄1b8!,K,L !, ~3a!

]b̄

]t
5Db

]2~ b̄1b8!

]x2 2d~~ ā1a8!~ b̄1b8!,K,L !, ~3b!

]p

]t
5d~~ ā1a8!~ b̄1b8!,K,L !. ~3c!

During the computation process, first the concentration of the
two electrolytes were perturbed, then the diffusion and the

reaction terms were consecutively calculated with the per-
turbed concentrations. This process has been repeated in ev-
ery time step. Perturbationa8 of ā ~perturbationb8 of b̄) can
be described as the summed up random effects acting on
each particles~of typeA andB). We suppose that all of them
have 0 mean and the same variance. The central limit theo-
rem implies, that the sum of the effects has 0 mean, and its
variance is proportional to the square root of the number of
particles, i.e., that of the concentration. Therefore, we calcu-
lated the perturbation of concentrations as follows:

a85~0.52rand~x,t!!dAā, ~4a!

b85~0.52rand~x,t!!dAb̄, ~4b!

whered is related to the magnitude of the fluctuations and
rand(x,t) is a normally distributed random number between
0 and 1. It has been is generated for the different electrolytes
in every position in each time step.

Equations~3a!–~3c! have been solved numerically using
a second order Runge–Kutta method with the following
boundary conditions:

]a

]x U
x50

5a0 and
]b

]xU
x50

5
]a

]x U
x5 l

5
]b

]xU
x5 l

50,

wherel is the length of the diffusion column. In all simula-
tions we used the parameter setDa5Db50.4, K50.13, L
50.1, k5250.0, l 5480, andd50.0003. The initial condi-
tions were

a~0,x!5a0Q~2x!,b~0,x!5b0Q~x! and p~0,x!50.

FIG. 1. Variation of the average amount of the precipitate in the diffusion
column for D50.0 ~top!, D50.4 ~middle!, andD50.8 ~bottom!. The dis-
tribution of the precipitate corresponds to the average from 100 independent
simulations. The black and gray color correspond to the deterministic and
the stochastic band positions, respectively.
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Here we choseb051.0, while a0 was varied between 1.0
and 1.8. The grid spacing wasDx50.4 and we performed
numerical simulations with the time stepDt50.004.

III. RESULTS AND DISCUSSIONS

Figure 1 shows the empirical density function of band
locations along the diffusion column at various initial con-
centration differences of the two electrolytes~D!. We pre-
sented the average of 100 calculations. One can see clearly
that decreasingD, the spatial distribution of band system
becomes more stochastic. Note that although decreasingD
leads to smaller perturbations~4a!–~4b!, at the same time the
pattern exhibits more stochastic behavior. We called a pre-
cipitate band position stochastic, if after the averaging pro-
cess this band occupies more than one spatial grid cell,
which arises from the spatial discretization of the partial dif-
ferential equations~3a!–~3b!. Bands occupying one spatial
grid cell after the averaging process were considered to be
deterministic. Figure 2 reflects this trend more evidently.
This figure displays the verification of the time law,25 which
states the linear dependence of distance of the bands on the
square root of it’s formation time. Standard deviation of the
band positions and square root of formation times increase
during the development of patterns. Both standard deviations
decrease with increasingD. These two main observations

~variation of the stochastic pattern structures and standard
deviations withD! are in good agreement with the results of
experimental findings.5–7

We observed an interesting phenomenon, a so-called
spatial bifurcation of a single band into two bands, presented
in Fig. 3. It should be noted that the peaks of the two bands
are approximately two times higher than the peak between
them, i.e., than that of the basis band. Recall that this band
separation was obtained as an average of 100 simulation re-
sults and not by individual pattern evolution. Similar phe-
nomenon has been observed in real experiments.5,7,26 See
Fig. 9 in Ref. 7.

We have performed Gaussian fitting for the average
amount of the precipitate depicted in Fig. 1. In some cases
the fitting procedure did not converge because the data struc-
ture was not Gaussian. By increasingD, the variation of the
fitted curves decreases for any fixed band number (n). In
spite of the fact that increasingD implies higher concentra-
tion perturbations, at a given space position one can observe
smaller variations of the band positions. Our results and find-
ings are summarized in Table I.

IV. CONCLUSIONS

We have modeled stochastic pattern distribution using
perturbed concentrations in a deterministic model. The pre-
cipitation process was based on the simplest approach, ap-
plied ion-product supersaturation theory~based on Ostwald’s
idea!. Liesegang patterns in the simulations are found to be
increasingly stochastic, in terms of reproducibility of the
band locations and of band formation as the initial concen-
tration difference, between the inner and outer electrolyteD
is decreased. The numerical results on the spatial distribution
of band locations are presented by an average of 100 runs to
which in most cases Gaussian function can be fitted. In some
cases, the fitting procedure was not possible far from the

FIG. 2. Dependence of the average distance of bands~measured from the
junction point of the two electrolytes! on the average square root of appear-
ance time with the spatial and square root time standard deviations of 100
simulations. The solid lines are the fitted linear curves for the different
values ofD.

FIG. 3. Variation of the average amount of the precipitate in the diffusion
column for D50.2. The distribution of the precipitate corresponds to the
100 independent simulations. The black and gray color correspond to the
deterministic and the stochastic band positions, respectively.

TABLE I. Parameters of the fitted Gaussian curves.X̄n ands̄n denote the mean and the standard deviation of the empirical data of the position of thenth band,
respectively. Notation ‘‘det’’ corresponds to the deterministic band positions and ‘‘~–,–!’’ yields the case, where the fitting procedure could not be performed.

D (X̂3 , ŝ3) (X̂4 , ŝ4) (X̂5 , ŝ5) (X̂6 , ŝ6) (X̂7 , ŝ7) (X̂8 , ŝ8) (X̂9 , ŝ9) (X̂10 , ŝ10) (X̂11 , ŝ11)

0.0 ~4.32, 0.23! ~7.50, 0.23! ~12.7, 0.49! ~21.1, 0.91! ~34.5, 1.70! ~56.2, 4.97! ~–,–! ~–,–! ~–,–!
0.2 det ~4.51, 0.23! ~10.5, 0.13! ~16.0, 0.59! ~24.2, 1.27! ~36.6, 2.35! ~–,–! ~82.0, 3.52! ~–,–!
0.4 det ~5.34, 0.26! ~7.68, 0.10! ~11.1, 0.39! ~16.3, 0.66! ~23.5, 1.18! ~34.0, 2.31! ~48.8, 5.53! ~69.6, 4.32!
0.8 det det det det ~14.1, 0.26! ~19.0, 0.50! ~25.7, 0.90! ~34.7, 1.30! ~46.7, 1.90!
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junction point of the two electrolytes. Results of the simula-
tions show that increasingD, the spatial distribution of the
precipitate is more deterministic, nevertheless the amplitude
of the maximal concentration perturbation is proportional to
the square root of concentration.D exactly determines the
pattern structure as pointed out in Ref. 7. Our model repro-
duces all experimental findings on pattern formation for low
initial concentration gradient.5–7
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