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Effect of geometry on the time law of Liesegang patterning
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Abstract

Evolution of Liesegang patterns in 2D radially symmetric gel media was studied experimentally in the AgNO3/K2Cr2O7/gelatine

system. Different initial conditions were applied by varying the radius of the hole from which the penetration of the invading elec-

trolyte took place. Our results show that the characteristics of the final pattern weakly depend on this parameter. In order to see

whether this dependence is in accordance with one of the most popular theories of Liesegang patterning a numerical model based

on Ostwald�s supersaturation model has been solved in 2D and 3D. Results of these simulations are in a good agreement with the

experimental observations. The time law was reformulated in order to incorporate the above mentioned geometrical effect.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

The first systematic investigations on quasi-periodic

precipitate patterns were performed by their explorer

Liesegang at the end of the 19th century [1–3]. In his

experiments he applied an experimental setup with cir-

cular geometry. It means that he put a drop of concen-

trated solution of AgNO3 onto a layer of gelatine,
soaked with dilute solution of K2Cr2O7.

Formation of Liesegang patterns can be character-

ized by several empirical regularities. The first and prob-

ably most important one is the so-called �spacing law�
which states that positions of the zones form a geomet-

rical series. This means that denoting two adjacent zone

positions by Xn and Xn + 1, their relation will tend to a

constant (spacing coefficient usually denoted by P) for
n large enough [4,5]: Xn + 1/Xn = P.

The second regularity or �time law� describes the evo-
lution of the zones. Using the previous notations and
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denoting the time of appearance of the nth band by tn
we can find that Xn ¼ b0t

1=2
n þ c0, where b0 and c0 are

constants [5,7]. These two laws are valid for all geome-

tries where the reaction front is closely planar.

The aim of the present paper is to investigate the evo-

lution of the Liesegang pattern using a radial setup. As it

is well know from the theory of chemical waves the cur-

vature of the reaction front has a great impact on the
velocity of the wave (curvature effect) [6]. Altough Liese-

gang patterning is a heterogeneous process and in this re-

spect it differs substantially from the autocatalytic

systems, it is interesting to see whether such geometrical

differences can affect the time law. In order to clarify this,

we have carried out experiments with 2D radial arrange-

ment varying the curvature of the boundary conditions.

Numerical simulations in 2D and in 3D were also per-
formed applying Ostwald�s supersaturation theory.
2. Experimental

A gelatine gel disk swollen by K2Cr2O7 solution with

thickness of 1 mm was prepared. 1 g gelatine (Reanal)
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and 10 ml of 0.0036 M K2Cr2O7 (Reanal) inner solution

was heated to 65–75 �C and stirred for 20 min.

After complete dissolution of the gelling material

7.2 ml of the solution was poured into a Petri dish of

diameter 9.6 cm. This container was hold firmly hori-

zontal to obtain uniformly 1 mm thick gel. The Petri
dish was then covered and left undisturbed at room tem-

perature (24 ± 2 �C) until completion of the gelation

process. The next day a sheet of transparency film with

a hole in the middle was put onto the outer surface of

the gel.

Three different experiments were performed with hole

radii 2, 3 and 6 mm.

The experiment was started by putting a few drops of
1.0 M AgNO3 (Reanal) outer solution into the hole and

set up the plastic AgNO3 reservoir. The plastic reservoir

is a 5 mm long tube with one end closed and with the

same diameter as the hole in the foil. The closed end

was leaky (by opening a hole with a pin) to supply

AgNO3 solution. The pattern formation was observed

in transmitted light from neon lamp by a CCD camera

(Panasonic WV-CP410.) connected to a computer. The
pictures were taken every 5 min for 10 h.
3. The model

A numerical model, based on Ostwald�s supersatura-
tion theory [8], and formerly studied by Büki et al. [9,10]

has been used to simulate the Liesegang patterning. A
simple precipitation process can be described by the fol-

lowing chemical equation:

AðaqÞ þ BðaqÞ ! PðsÞ;

where P(s) is the precipitate. Combining this reaction

with the diffusive transport of the electrolytes the

dynamical equations for such a system are the following:

oa
os

¼ Dar2a� dðab;K; LÞ; ð1aÞ

ob
os

¼ Dbr2b� dðab;K; LÞ; ð1bÞ

op
os

¼ dðab;K; LÞ; ð1cÞ

where a and b are the concentrations, Da and Db denote

the diffusion coefficients of the species A(aq) and B(aq),

respectively, while p is the amount of the precipitate. In

our description all these quantities were dimensionless. s
is the dimensionless time, d(ab, K, L) is the reaction term

that describes the precipitation. According to the super-

saturation theory the exact definition of this latter is the
following:
if p ¼ 0 there is no precipitate

dðab;K; LÞ ¼ jdPHðab� KÞ;
if p 6¼ 0 there is some precipitate

dðab;K; LÞ ¼ jdPHðab� LÞ;

where the formation of a biner precipitate can be de-

scribed by the following equation:

dP ¼ 1

2
ðaþ bÞ � ½ðaþ bÞ2 � 4ðab� LÞ�

1
2

h i
;

where j is the precipitation reaction rate constant, L is

the solubility product, K denotes the nucleation product,

function H is the Heaviside step function while dP is the

amount of the reaction product.
For a radially symmetric experimental arrangement

(feeding from a central point or a circle), the exact form

of the above system of reaction-diffusion differential

Eqs. (1a)–(1c) will be the following:

oa
os

¼ Da
o2a
or2

þ Da
N � 1

r
oa
or

� dðab;K; LÞ; ð2aÞ

ob
os

¼ Db
o2b
or2

þ Db
N � 1

r
ob
or

� dðab;K; LÞ; ð2bÞ

op
os

¼ dðab;K; LÞ; ð2cÞ

Here r is the distance from the center and N is the num-

ber of spatial dimension. In our study, these equations

were solved numerically using a second-order Runge–

Kutta method with upwind approximation. Boundary

conditions for all cases were the following:
ajr¼r0
¼ a0 and

ob
or

����
r¼r0

¼ oa
or

����
r¼rl�r0

¼ ob
or

����
r¼rl�r0

¼ 0;

where rl�r0 is the length of the reaction medium and r0
is the radius of the hole.

Most of the input parameterswere kept constant.Their

values were chosen so that relatively large number of
zones could evolve. The values of these fixed parameters

were the following:Da = Db = 0.4, K = 0.103, L = 0.1,

j = 103 and rl�r0 = 800.

For the concentrations the following initial condi-

tions were used:

að0; rÞ ¼ a0Hðr0 � rÞ
bð0; rÞ ¼ b0Hðr � r0Þ and pð0; rÞ ¼ 0;

where a0 and b0 are the initial concentration of the outer

and inner electrolyte, respectively. Here we chose

b0 = 1.0, while a0 and r0 were varied in the simulations.

The grid spacing and the time step were Dr = 0.4 and

Ds = 0.001, respectively.



Fig. 2. Experimental evolution curves for different hole radii (R0). The

dotted lines are the fitted second-order curves. The solid line represents

the fitted linear curve for first the seven points in case of R0 = 6 mm.
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4. Results and discussion

Fig. 1 shows precipitate distributions for various hole

radii. The density distribution functions were deter-

mined by a home made image processing software run-

ning on a Silicon Graphics workstation. The evolution
curve (positions of the rings versus square root of time

ellapsed until their formation) is displayed in Fig. 2.

According to the generally accepted �time law� the evolu-
tion curve of patterns formed by planar fronts is linear.

However, in our case where the fronts are circular, the

positions of the rings can be accurately described by a

second-order function. Morevover, the deviation from

the linearity increases as the radius of the hole (r0) de-
creases. Numerical simulations exhibit a similar trend

(Fig. 3). In case of 1D simulation the evolution curve

is linear. In a recent paper we have studied the effect

of external electric field on 1D Liesegang patterning

[11,12]. It was found that the distortion of the evolution

curves can be described by a second order polynomial.

From a purely mathematical point of view the governing

equations of the two systems are very similar so we have
applyed the same type of approximation
Fig. 1. The two dimensional precipitation patterns of AgNO3 in gelatin gel ([

the experiments: (a) R0 = 2 mm; (b) R0 = 3 mm; (c) R0 = 6 mm. The scale b
Xn ¼ aðr0;NÞsþ bðr0;NÞs1=2n þ cðr0;NÞ; ð3Þ
where a(r0,N), b(r0,N) and c(r0,N) are constants that de-

pend on the radius and the spatial dimension. These

parameters must satisfy the following constraints:
AgNO3] = 1.0 M and [K2Cr2O7] = 0.0036 M) at 6.67 h after the start of

ar is 1 cm.



Fig. 4. Simulated evolution curves for different initial concentrations of the outer electrolyte (a0) in (a) 2D and (b) 3D at fixed hole radius (r0 = 60).

The dotted lines are the fitted second-order curves.

Fig. 3. Simulated evolution curves for different hole radii (r0) in (a) 2D and (b) 3D at fixed initial concentration of the outer electrolyte (a0 = 1.0). The

dotted lines are the fitted second-order curves. The solid line represents the fitted linear curve in 1D simulation.
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lim
r0!1

aðr0;NÞ ¼ 0;

lim
r0!1

bðr0;NÞ ¼ b0;

lim
r0!1

cðr0;NÞ ¼ c0:

This former relation (3) is a more general form of the

time law, which describe the evolution of the Liesegang

pattern formation in all geometrical (planar, radial) con-

ditions and spatial dimensions.
The decrease of r0 causes a more and more pro-

nounced deviation from the usual linear time law (Figs.

2 and 3). This effect becomes more conspicuous in 3D.

In case of a radial arrangement due to the initial and

boundary conditions it is more convenient to describe

the system in polar coordinates ((2a) and (2b)). The dif-

fusion term consists of two parts, and the second, N�1
r is

usually not negligible. As the spatial dimension (N) in-
creases this second term curvature effect becomes more

expressed resulting in a slower evolution. The decrease
the of radius (r0) has the same impact. The initial condi-

tion has a direct impact on the beginning part of the pat-

tern. At the same time the shift of the first precipitate

zones changes the conditions of the whole evolution

process.

We have investigated the effect of the outer electrolyte

concentration on evolution of rings for fixed r0 (Fig. 4).

In both 2D and 3D cases similar trends can be observed.
Increasing the concentration causes the rings to shift

outward.

This effect has been observed in case of planar fronts

where the front evolution line slope is increased. In our

case the evolution curve becomes steeper in every point.

Just like in case of planar fronts this is due to the higher

mass flux.
5. Conclusions

Although Liesegang patterning is a relatively well

studied phenomenon as to our best knowledge until
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now the difference between planar and radial arrange-

ments has not been investigated yet. At the same time

it is physically plausible that the curvature of the initial

and boundary conditions should have some impact on

the evolution of such systems.

Recently several authors have studied patterning in
2D circular geometries [13–18] but their work was

mainly focused on the mechanism of patterning.

In contrast during the work reported in this Letter, we

have used one of the most simple mechanisms (supersat-

uration model) and studied the above mentioned geo-

metrical effects.

2D experiments with radial arrangement were per-

formed and the initial conditions (radius of the inner
hole) were varied. Numerical simulations with similar ini-

tial and boundary conditions were performed in 2 and 3

dimensions. The effects found in the model calculations

and in the real experiments show a good agreement.

We have concluded that the evolution of the radial

patterns can be described by a second order function,

which means that the usually applied time law suffers

a weak distortion in these cases.
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