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Abstract

Stabilization and destabilization effects of an applied electric field on the Liesegang pattern formation in low concentration

gradient were studied with numerical model simulations. In the absence of an electric field pattern formation exhibits increasingly

stochastic behaviour as the initial concentration difference between the outer and the inner electrolytes (D) approaches to zero. Our

numerical simulation results have shown that, if the electric field promotes the transport of the reaction front of the outer electrolyte

into the diffusion column, then the electric field stabilizes the stochastic pattern structure. This means that Liesegang patterns in the

simulations will be decreasingly stochastic, in terms of reproducibility of band locations and of the band formation. Destabilization

behaviour was observed in the reverse case, if the electric field retards the diffusion of the outer electrolyte. Simulation of pattern

formation is presented using concentration perturbations in a deterministic model. The precipitation process is based on ion-product

supersaturation theory (Ostwald’s model).

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Variety of spatial patterns arises from the interac-

tion of chemical reaction and diffusion, such as chem-

ical waves [1], autocatalytic fronts [2], Turing structures

[3] or precipitation patterns (Liesegang phenomenon)

[4]. In most of such systems the reaction occurs be-

tween the ionic species, hence electric field has a
significant influence on the evolution of pattern for-

mation. Detailed investigations have been pursued on

this topic in the last two decades; deformation of spiral

waves [5,6], splitting [7,8] and deformations of waves

[9] were presented. Effects of an electric field on auto-

catalytic front propagation in iodate–arsenous acid

system were studied by Forstova et al. [10]. T�oth et al.
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[11] and Horv�ath et al. [12] investigated the influence of

external electric field on diffusion driven front insta-

bility. Interaction of Turing patterns with electric field

was also observed [13].

Liesegang patterns appear due to the diffusion and

precipitation of two, initially separated electrolytes [14].

One of them (inner electrolyte) is uniformly distributed

in a gel (diffusion column) and the other one (outer
electrolyte) diffuses from outside into the diffusion col-

umn. In the absence of an electric field dependence of

band position on the square root of its formation time is

linear. Experimental [15–23] and numerical studies [22–

24] have shown that the applied electric field modified

the spatiotemporal evolution of Liesegang patterns.

Dependence of the band position on formation time in

the presence of an electric field is

Xn ¼ a0sn þ b0s
1=2
n þ c0;

where Xn is the position of the nth band measured from

the junction point of the two electrolytes, sn is the time
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elapsed until its formation, while a0, b0, and c0 are

constants.

In experiments the necessary condition for the pattern

formation is that the ratio of the initial concentrations

(b0=a0, where a0 and b0 are the initial concentration of
the outer and inner electrolytes, respectively), is small.

In study of Antal et al. [25] the authors proposed that

0:0056 b0=a0 6 0:1 and in this case they obtained well

reproducible regular Liesegang patterns. Kai et al. [26],

Kai and M€uller [27], and M€uller and Ross [14] presented

that low initial concentration difference (D ¼ a0 � b0) in
the absence of an electric field leads to considerable

uncertainty, in terms of the location of bands and of the
appearance time. Experimental investigations have

shown that pattern formation exhibits increasingly sto-

chastic behaviour as D approaches to zero. Recently,

this fact has been reproduced by numerical simulations

[28].

The aim of this paper is to show by using concen-

tration perturbations in a deterministic model that the

external electric field is able to stabilize or destabilize the
stochastic precipitate patterns in the case of low initial

concentration difference.
2. The model

The simplest precipitation reaction, which can be

used to reproduce pattern formation is

AþðaqÞ þ B�ðaqÞ ! PðsÞ:
Here the reagents Aþ(aq) and B�(aq) (outer and inner

electrolytes, respectively), turn into an immobile pre-
cipitation product P(s). Like in our previous study [28]

we decompose the concentrations a of Aþ(aq) and b of

B�(aq) as a ¼ �aþ a0 and b ¼ �bþ b0, where �a, �b are the

average concentrations, while a0, b0 are the concentra-

tion fluctuations. All of these quantities depend on

spatial (x) and time (s) variables. Based on a standard

deterministic model [29,30] (using Ostwald’s supersatu-

ration theory [31]), evolution of pattern formation can
be described by the following system of equations:

o�a
os

¼Da
o2ð�aþa0Þ

ox2
� za�

oð�aþa0Þ
ox

�dðð�aþa0Þð�bþb0Þ;K;LÞ;

ð1aÞ

o�b
os

¼Db
o2ð�bþb0Þ

ox2
� zb�

oð�bþb0Þ
ox

�dðð�aþa0Þð�bþb0Þ;K;LÞ;

ð1bÞ

op
os

¼ dðð�aþ a0Þð�bþ b0Þ;K; LÞ; ð1cÞ

where all quantities are dimensionless. During the
computations variation oa0=os of fluctuation a0 and that
of b0 are usually considered to be zero, since the average

effect of these terms for any time interval is zero. Taking

lim a0 ¼ 0 and lim b0 ¼ 0 would lead us to the deter-

ministic case. p is the amount of the precipitate. Da, Db

and za, zb denote the diffusion coefficients and the
charges of the electrolytes, respectively, while � is the

electric field strength. dðab;K; LÞ is the precipitation re-

action term defined as follows:

dðab;K; LÞ ¼ jSPHðab� KÞ if p ¼ 0

jSPHðab� LÞ if p > 0;

�

where j is the rate constant of the precipitation reaction,

L is the solubility product, K is the nucleation product

and H is the Heaviside step function.

SP ¼ 1

2
ða

�
þ bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ2 � 4ðab� LÞ

q �
;

yields the amount of the precipitate proposed by B€uki
et al. [29,30]. In our calculations the amount of the

precipitate was not limited at any space position.

During the computation process, first the concentra-

tions of the two electrolytes were perturbed, then the

diffusion and the reaction terms were consecutively

calculated using the perturbed concentrations. This

process has been repeated in every time step. At the
microscopic level the only assumption was that the

displacement of each particles are identically distributed.

The mean of this distribution is related to the electric

field strength (�), while its variance is proportional to the

fluctuations in the system.

Application of the central limit theorem gives that

the change of concentration (which can be described

by the displacement of particles) is normally distributed:
the mean is determined again by �, while its standard

deviation is proportional to the square root of the

number of ions, i.e., that of the concentration. There-

fore, the perturbations of the concentrations were cal-

culated as follows:

a0 ¼ ð0:5� randðx; sÞÞd
ffiffiffi
�a

p
; ð2aÞ

b0 ¼ ð0:5� randðx; sÞÞd
ffiffiffi
�b

p
; ð2bÞ

where d is related to the magnitude of the fluctuations

and randðx; sÞ is a normally distributed random number

between 0 and 1. It has been generated for the different

electrolytes in every position in each time step.

In the numerical solution of Eqs. (1a)–(1c) we applied
the ‘‘method of lines’’ with a second order Runge–Kutta

method using the following boundary conditions:

oa
ox

����
x¼0

¼ a0 and
ob
ox

����
x¼0

¼ oa
ox

����
x¼l

¼ ob
ox

����
x¼l

¼ 0;

where l is the length of the diffusion column. In all sim-

ulations the parameter set Da ¼ Db ¼ 0:4, K ¼ 0:13,
L ¼ 0:1,j ¼ 250, za ¼ 1, zb ¼ �1, l ¼ 480 and d ¼ 0:0003
was used. The initial conditions were
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að0; xÞ ¼ a0Hð�xÞ; bð0; xÞ ¼ b0HðxÞ and pð0; xÞ ¼ 0:

Here we chose a0 ¼ 1:4, b0 ¼ 1:0, while � was varied

between �0:0025 and 0:0025. The grid spacing was

Dx ¼ 0:4 and we performed numerical simulations with
the time step Ds ¼ 0:004.
3. Results and discussions

We performed 100 simulations for each case corre-

sponding to the various electric field strengths, which

was sufficient for the statistical analysis. Earlier, in the
order of 10 real experiments were carried out at low

concentration difference in the absence of an electric

field. Fig. 1 shows the empirical density function of band

locations along the diffusion column for various electric

field strengths. In the present case (since the ions Aþ

have a positive charge) � > 0 means that the electric field

promotes the transport of the outer electrolyte into the

diffusion column. During the simulations, we did not
limit the amount of the formed precipitate. In this way,

if in a given cell the precipitation process occurred, it

could not ‘‘spread over’’ to the neighbor cells. There-

fore, in each (independent) runs each of the bands

occupies only one grid cell.
Fig. 1. Variation of the average amount of the precipitate (pavg) in the

diffusion column for: (a) � ¼ 0:0025, (b) � ¼ 0, and (c) � ¼ �0:0025 as a

function of distance measured from the junction point of the two

electrolytes at s ¼ 5� 106. The distribution of the precipitate corre-

sponds to the average of 100 independent simulations. The black and

gray color correspond to the deterministic and to the stochastic band

positions, respectively.
The evolution of the band systems is displayed in

Fig. 2. The band position does not depend linearly on

the square root its formation time (as mentioned for the

electric field free case). We found that the formation of

the bands can be described by the function

�Xn ¼ a0ð�Þ�sn þ b0ð�Þ�s1=2n þ c0ð�Þ; ð3Þ
where �Xn and �sn are the average of the nth band posi-

tions and formation time, respectively. a0ð�Þ; b0ð�Þ; and
c0ð�Þ depend on the electric field strength. The first term

of the right hand side of Eq. (3) corresponds to the

migration of ions and the second one to the diffusion.
The stabilization–destabilization effect of an electric

field is reflected more evidently in Figs. 3 and 4. We

investigated the dependence of the standard deviation of

band positions and formation time on the number of

bands (Fig. 3) and on spatial position (Fig. 4). In Fig. 3.

both types of standard deviations increase exponentially

with the number of bands. We obtain a more realistic

picture for the effect of the electric field strength, if the
standard deviations are plotted as a function of the

spatial position. In this case, we obtained a similar de-

pendence but standard deviation of band formation

time depends polynomially (of order 3) on space posi-

tion, and standard deviation of band positions increases

with space position as a second order polynomial

(Fig. 4). The summary of our findings is that the stan-

dard deviations increase as electric field strength is de-
creased. Dependence of standard deviation of band

formation time on space position is higher than the

standard deviation of the band positions. The precipi-

tate pattern exhibits more deterministic behaviour in

space than in time.
Fig. 2. Dependence of the average distance of bands (measured from

the junction point of the two electrolytes) on the average square root of

formation time. The spatial and square root time standard deviations

of 100 simulations are also shown. The solid line corresponds to the

fitted linear curve in the absence of an electric field. The dotted lines

represent the fitted second-order curves in the presence of an electric

field. ((d) � ¼ 0:0025; (N) � ¼ 0:00125; (j) � ¼ 0; (M) � ¼ �0:00125;

(s) � ¼ �0:0025).



Fig. 3. (a) Dependence of the standard deviation of band formation time (sdt) on the band number; (b) Dependence of the standard deviation of the

band positions (sdx) on the band number. ((d) � ¼ 0:0025; (N) � ¼ 0:00125; (j) � ¼ 0; (M) � ¼ �0:00125; (s) � ¼ �0:0025).

Fig. 4. (a) Dependence of the standard deviation of band formation time (sdt) on band position; (b) Dependence of the standard deviation of the

band positions (sdx) on band position. ((d) � ¼ 0:0025; (N) � ¼ 0:00125; (j) � ¼ 0; (M) � ¼ �0:00125; (s) � ¼ �0:0025).
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4. Conclusions

Decreasing �, the spatial distribution of bands be-

comes more stochastic as shown in Fig. 1. We called a

precipitate band position stochastic if after the averag-
ing process this band occupies more than one spatial

grid cell. Otherwise it was considered deterministic. The

high values of standard deviation in the experiments can

be recognized as a stochastic behaviour of the reaction-

diffusion system. Fig. 2 reflects the experimental finding

that the electric field modifies the diffusion characteris-

tics of the electrolytes. Ionic migration flux of the outer

electrolyte changes the spatiotemporal evolution of
Liesegang patterns. Fluctuations and stochastic behav-

iour of the phenomenon can be described by standard

deviation of band position and formation time as we did

in Fig. 3 (in dependence of band number) and in Fig. 4

(in dependence of spatial position). In both cases stan-

dard deviations are monotone increasing with the

number of bands and the position. The bands belonging

to the same band number occupies different position
depending on the electric field strength.
We predicted that the stochastic precipitate pattern

distribution depends on the electric field strength using

perturbed concentration in a deterministic model.

Liesegang patterns have been found to be increasingly

deterministic, in terms of reproducibility of the band
locations and of band formations as the electric field

promotes the transport of the outer electrolytes.
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