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We investigate the regular and moving Liesegang pattern formation phenomena in an open system. First,
simulations have been performed at fixed coupling between the reactive medium and the reservoir, later this
control parameter was varied during the simulations resulting in various phenomena. We predicted and
monitored for the first time various—dynamically changing—precipitation structures and a spatial hysteresis
phenomenon, which is beyond the scope of the Turing instability. The dynamics of the reaction is well detectable
using specific quantities: the total amount of precipitate and its center of gravity.

1. Introduction

Detailed investigations of homogeneous chemical systems
showed that phenomena like bistability, complex and chaotic
oscillations may exist only in open chemical systems, far from
thermodynamic equilibrium.1,2,3 The appropriate experiments
are carried out using a continuously stirred tank reactor (CSTR).
In 1952, Turing predicted that the diffusion of species may
destabilize a homogeneous chemical system producing station-
ary patterns in a spontaneous way.4,5 The pioneering work of
De Kepper and his coworkers provided for the first time an
experimental evidence for the formation of Turing patterns.6

Up to the last decade, a wide range of spatial or spatiotemporal
reaction–diffusion patterns (such as complex Turing patterns,
phase waves, autocatalytic chemical fronts, etc.) have been
designed and investigated also in open systems. 7,8

Formation of the precipitation patterns in the wake of
diffusion driven chemical fronts has been extensively studied
from the end of the 1800’s.9,10 This is the first chemically
designed and controlled spatiotemporal pattern formation.
Although the generation of such patterns (called Liesegang
patterns) is quite easy, the research on this topic still has a great
relevance. In the typical experimental setup, one chemical
reagent is uniformly distributed in a gelled medium (called
inner electrolyte, B), while the other one (called outer electro-
lyte, A) diffuses from outside. The initial concentration of A is
chosen to be much larger than that of B. This condition ensures
the higher diffusion flux of the outer electrolyte into the gel.
The coupling of the diffusion and the precipitation reaction
between the two chemical components produces a non-soluble
precipitate (AB) in the reaction front. The distribution of the
precipitate is usually non-uniform behind this front. Appearing
precipitation zones (Liesegang bands or rings, depending on
the geometry of the experimental setup)11–19 have several
empirical regularities (time, 20,21 spacing,22 and width law23–25),
in which some well-measurable quantities are connected with
each other. These are Xn, the position of the nth band,
measured from the junction point of the electrolytes, tn the
appearance time, and wn, the width of the nth band, respec-
tively. The Matalon–Packter law describes the dependence of

the spacing coefficient (P ¼ Xn11/Xn) on the initial concentra-
tion of the inner and outer electrolytes.26–28 Recently, a new
and more general law has been proposed, which also includes
advective dynamics in the reactive medium.29 For this, two new
quantities are introduced: ptot, the total amount of precipitate
and Xc, the position of the center of gravity of precipitation
system measured from the junction point of the electrolytes.
Besides the theoretical derivation, experimental and numerical
evidences confirmed the new law, which states that ptot is
linearly proportional to Xc.

29

From the beginning of the last decade, more and more
complex precipitation pattern formation scenarios have been
studied and discussed.30,31,34–36 Several authors reported that
the precipitation process followed by complex formation of
precipitate may produce moving Liesegang patterns (‘‘moving’’
bands)34–36 or moving precipitation pulse (precipitation
waves).12,30–33 In several papers, deterministic chaotic time
oscillation of the total number of bands,35,37 effect of an
electric field on pattern structure,12,38 and crossover from the
precipitation waves to moving Liesegang patterns39 have been
investigated. These are the recent trends in the study of the
precipitation pattern formation phenomena.
Das et al. presented the Liesegang pattern formation in 2D

using a gel-ring reactor, in which the two electrolyte solutions
were fed from reservoirs13: The outer electrolyte was fed
continuously from the center, while the inner one from a gel
ring outside the reaction medium. Several years ago Bhatta-
charya et al. proposed a model, which included a single
autocatalytic reaction step followed by nucleation and
growth.40 Based on the fact that a cubic autocatalytic step
coupling with CSTR may give rise to Turing patterns,41 they
demonstrated formation of spatially periodic precipitation
patterns.40

In classical experimental setup, the diffusion front of the
outer (invading) electrolyte depletes the inner electrolyte from
the reactive medium due to the precipitation reaction. The aim
of this paper is to provide for the first time a systematic
investigation of the regular and moving Liesegang pattern
formation in an open system, where a continuous feeding of
the inner electrolyte is allowed.
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2. Model

To illustrate our idea, we have chosen the simplest precipita-
tion mechanism (1 : 1 type, AB), giving rise to precipitation
patterns, according to the reaction

A(aq) þ B(aq) - AB(s), (1)

where A and B yield the outer and inner electrolytes, respec-
tively, while AB is the precipitation product. In addition, the
precipitate reacts with the excess of the outer electrolyte,
producing a soluble complex

AB(s) þ A(aq) - A2B(aq). (2)

For simplicity, we supposed that the formed complex A2B is
stable, so the reverse step was neglected. Due to the irreversible
step the stable complex does not affect dynamically the pattern
formation. Therefore, it was supposed that neither the complex
nor the precipitate diffuses.

A sketch of our system appears in Fig. 1 where for a clear
visual interpretation we provide a 2-D description. In fact, the
thickness of the reactive medium is negligible and therefore, the
reaction is described using only horizontal coordinates. The
dimensionless governing equations for the reactive medium,
coupled with a well-mixed reservoir for the inner electrolyte
(open system) in 1-D are

@a

@t
¼ Da

@2a

@x2
� Dðab;K ;LÞ � kpa; ð3Þ

@b

@t
¼ Db

@2b

@x2
� Dðab;K ;LÞ þkðb0 � bÞ; ð4Þ

@p

@t
¼ Dðab;K ;LÞ � kpa; ð5Þ

@c

@t
¼ kpa; ð6Þ

with t and x being the time and length coordinates, respec-
tively. Here a, b, c, and p denote the concentrations (or even
density for solid phase) of the outer and inner electrolyte, the
complex, and the precipitate, respectively. Da and Db are the
diffusion coefficients of the corresponding species, while b0 is
the concentration of the inner electrolyte in the reservoir
(CSTR). k is the reaction rate constant for the complex
formation (eqn (2)). k is related to the coupling between the
reactive medium and CSTR, which maintains a continuous
mass flux of the inner electrolyte. k is the inverse of the

residence time of species in the reactor, which can be accurately
controlled by the flow rate. The function D(ab, K, L) (will be
specified later on) describes the precipitate formation based on
Ostwald’s supersaturation theory. Despite its simplicity and
generality this concept provides a perspicuous mechanism in
many cases, where the precipitation process plays a partial role.
The efficiency of the above mentioned precipitation mechanism
was tested by simulating the effect of an electric field,42,43

stochastic precipitation pattern formation,44 and also moving
Liesegang bands and precipitation waves.37 The term kpa in
eqns (3), (5) and (6) represents the complex formation rate,
whereas k(b0 � b) in eqn (4) describes the coupling between the
reactive medium and the reservoir. However, it should be
noted that the immobilization of the complex is not a necessary
condition for the moving pattern formation.
To describe the precipitation formation presented by the

simple mechanism (1) we choose the model proposed by Büki
et al.,45,46 which is based on the Ostwald’s ion-product super-
saturation theory.47 The precipitation reaction term D(ab,K,L)
is defined as follows:

Dðab;K;LÞ ¼ k0SpYðab� KÞ if p ¼ 0
k0SpYðab� LÞ if p40;

�
ð7Þ

where k0 is the rate constant of the precipitation reaction (1), K is
the nucleation product, L is the solubility product, and Y is the
Heaviside step function. The coefficient Sp is related to the extent
of the supersaturation of the system and influences the intensity
of the reaction. Formally, Sp is calculated using the equation (a
� Sp) (b� Sp)¼ L. As far as abr L we do not need to define it,
since the precipitation reaction term in (7) is zero, anyway.45,46

The precipitation reaction continues at a certain point x until the
concentration p in x has reached a threshold pmax.
Numerical simulations were performed using a ‘‘method of

lines’’ technique. Discretization of eqns (3)–(6) was carried out
on a 1-D equidistant grid applying a second-order finite
difference scheme. In this procedure, at any fixed time the
functions a,b,c and p in (3)–(6) are substituted with vectors
[a(t, x1), a(t, x2),. . .,a(t, xn)] and similarly for b, c and p, res-
pectively, where x1,x2,. . .,xn are the grid points. The spatial dif-

ferential operator @2

@x2
turns to be a matrix of dimension n � n

and with this, (3)–(6) can be approximated by a system of ordi-
nary differential equations (of size n) with respect to time. This
has been solved using a second-order Runge–Kutta method
with the following initial conditions:

a(0,x) ¼ a0Y(�x), b(0,x) ¼ b0Y(x), p(0,x) ¼ c(0,x) ¼0.

The boundary condition is no flux type both for the inner and
the outer electrolyte at the end of the reactive medium. It is
Dirichlet type a(t,0) ¼ a0 for the outer electrolyte at the
junction point of the electrolytes. Although both k and b0
could be used as control parameters of the system, b0 was fixed
in the simulations. This concentration has been chosen to
coincide that of the initial concentration of B in the reactive
medium. The presented model allows to describe the crossover
from Liesegang patterns to precipitation waves using only one
parameter: in case of k ¼ 0 regular Liesegang pattern forma-
tion, and for k a 0 moving patterns are expected.
In all simulations, we used the parameter set Da ¼ Db ¼ 1.0,

K ¼ 0.15, L ¼0.1, k0 ¼ 1.0, and pmax ¼ 50.0. The grid spacing
was Dx ¼ 1.0, and the numerical simulations were performed
with the time step Dt ¼ 0.01.

3. Results and discussion

3.1. Regular and moving precipitation patterns at fixed

coupling

First, the dependence of pattern structure on the coupling
coefficient (k) has been investigated in the case of regular

Fig. 1 Schematic representation of the system. Initially, the inner
electrolyte is uniformly distributed in the reactive medium (gel), which
is coupled to the CSTR. When the reaction occurs, the invading flux of
the outer electrolyte is perpendicular to that of the inner electrolyte
coming from the CSTR. In the classical setup, the inner electrolyte will
be depleted in the reactive medium during the reaction. I and O yields
the input and the output flow of the inner electrolyte, respectively.
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Liesegang patterns (k ¼ 0), and precipitation wave (k ¼ 10�3).
Obviously, if k ¼ 0 (there is no coupling between the reactive
medium and reservoir), then regular Liesegang pattern and
precipitation wave evolve, and the final pattern will depend on
the particular parameter set. If k c 0, a single precipitation
zone develops, starting from the junction point of the electro-
lytes instead of the (regular or moving) Liesegang patterns, due
to the high flux of the inner electrolyte from the reservoir. This
extremely high coupling reduces and slightly modifies the
purely diffusive profile of the invading (outer) electrolyte A.
This intensive coupling ensures that the product of the local
concentrations is kept above the nucleation product (K), there-
fore, the precipitate is formed continuously. Fig. 2a,b shows
the final pattern structure for fixed values of k. Results of the
numerical experiments are in good agreement with the above
explanation.

In the case of the precipitation waves, increasing k results in
a thicker precipitation zone, the final position of which is
getting more and more close to the junction point. Increasing
k promotes the precipitation reaction, thus reduced concentra-
tion of the outer electrolyte puts back the complex formation.

In contrast to the case of precipitation waves, we predict
regular Liesegang patterns for small values of k, and a single
precipitation zone for relatively high values of the control
parameter. The time law for the regular Liesegang patterns
(even for 1-D or planar ones) states that the position of each
band is linearly proportional to the square root of its forma-
tion time. This is a consequence of the diffusive dynamics of the
invading electrolyte. In several cases, modification of the

dynamics (including the presence of external electric field,
advection field, curvature effect) results in some deviations
compared to the time law.20 Fig. 3a presents the evolution of
the pattern for various values of k. Relatively high coupling
hampers the depletion of B, therefore, the more intensive
precipitate formation reduces the concentration of A in the
reactive medium, which leads to the slower evolution of the
pattern. Similarly, the center of gravity of the precipitation
system (Xc) exhibits slower motion in time as depicted in Fig.
3b. The total amount of the precipitate ptot and the center of
gravity of the precipitation system Xc are defined as follows:

ptotðtÞ ¼
Z L

0

pðt; xÞdx;XcðtÞ ¼
R L
0
pðt; xÞxdx
ptotðtÞ

; ð8Þ

where L is the length of the 1-D reactive medium. At the same
time, the enhanced reaction rate increases the total amount of
precipitate (ptot), the evolution of which has been plotted in
Fig. 3c. Note that increasing the coupling coefficient affects
more significantly ptot than Xc. In this way increasing k,
dependence of ptot on Xc exhibits an accelerating growing rate
(Fig. 3d). In the regular 1-D case, in all of the subfigures of Fig.
3 one can observe a linear dependence. Moreover, this linear
dependence in Fig. 3d is also valid in the case of an additional
advective flux in the system.29

3.2. Moving precipitation patterns using time dependent

coupling

Up to this time, the control parameter (k) was fixed at certain
values during the numerical experiments. Now we will focus on
the behavior of the system with the coupling rate between the
reactive medium and reservoir being varied on a continuous
scale: various time dependences of k have been applied.
Accordingly, variation of the total amount of the precipitate
(ptot) and the center of gravity of the precipitation system (Xc)
is depicted in Fig. 4 as a function of log k. The change of log k
was linear on [nT, (n þ 1)T] with integer values of n. We give
the exact time dependence of log k as follows:

kðtÞ ¼

9:0 � 2n� 9:0 � 2
T
t if 2n T

2
� t � ð2nþ 1Þ T

2

�9:0 � ð2nþ 2Þ þ 9:0 � 2
T
t if ð2nþ 1Þ T

2
� t � ð2nþ 2Þ T

2
;

8<
:

which allows to illustrate clearly its effect on the distribution of
the precipitate, where T is the time period of one cycle. All
simulations were started at k ¼ 10�9, which corresponds to a
very weak coupling.
Increasing k results in an increased amount of the precipitate

due to the enhanced mass-flux of the inner electrolyte from the
reservoir into the reactive medium. The maximum of ptot is
attained at the maximal rate of the coupling (k ¼ 1 in the
simulations). Similarly, ptot is decreasing when the coupling
coefficient k is decreased (Fig. 4a). One can observe a slightly
different behavior of the center of gravity with varying k. The
position Xc is an increasing function of k up to a certain
coupling coefficient, afterwards, Xc is decreasing (Fig. 4b).
Decreasing k from the maximum to its minimum value, Xc

monotonically increases. At the first stage, when the coupling is
weak, a precipitation wave travels in the reactive medium. In
the case of higher coupling, the precipitate formation behind
the pattern will dominate compared to the precipitate dissolu-
tion by complex formation. At the same time, the precipitate
formation is stopped in front of the pattern, because the
coupling and precipitation reaction behind it reduces the
concentration of the invading electrolyte. Therefore, Xc is
shifted backward, however, the total amount of precipitate
increases continuously. The complex formation of the precipi-
tate has a more significant role behind the pattern, when the

Fig. 2 Distribution of the precipitate in 90 individual simulations
with different fixed k in case (a) k ¼ 10�3 (precipitation wave; a0 ¼
1000.0, b0 ¼ 600.0) and (b) k ¼ 0 (regular Liesegang pattern; a0 ¼ 10.0,
b0 ¼ 1.0) at t ¼ 5 � 104, respectively. White region depicts the presence
of the precipitate along the 1-D reactive medium. At a fixed value of k,
the gray scale along the y-axis (spatial coordinate X) represents the
spatial variation of the precipitate p.
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coupling rate is decreased. The same applies to ptot, while Xc

increases. At weak coupling, the precipitation process con-
tinues in front of the precipitation wave and the wave evolves
further.

The most interesting scenario observed during the simula-
tions is the hysteresis of the pattern. Accordingly, one can
observe the hysteresis of the quantities ptot and Xc related to the
pattern. The time oscillation of ptot is a trivial consequence of

Fig. 3 Position of the precipitation bands (a) (solid line and dotted lines represent the fitted linear and second order curves, respectively), position
of the center of gravity of the precipitation system (measured from the junction point of the electrolytes) (b), and the total amount of the precipitate
(c) as a function of the square root of time at various coupling coefficient (k). (d) The total amount of the precipitate as a function of the center
of gravity. The solid line corresponds to the linear proportion between them in the absence of coupling between the reactive medium and reservoir
(k ¼ 0). Initial concentrations: a0 ¼ 10.0, b0 ¼ 1.0.

Fig. 4 Hysteresis of the total amount of the precipitate (a) and the
center of gravity of the precipitation system (b) using various cycle
lengths. The initial concentrations are a0 ¼ 1000.0, b0 ¼600.0. Arrows
represent the evolution of the system.

Fig. 5 Hysteresis of the total amount of the precipitate (a) and the
center of gravity of the precipitation system (b) using fixed cycle length
(the time period is 5 � 104) throughout four cycles. Initial concentra-
tions are a0 ¼ 1000.0, b0 ¼ 600.0. Arrows represent the evolution of the
system.
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the variation of k in time, but the hysteresis is a unique feature.
Note that similar hysteresis curves (with different maxima)
belong to different time dependent functions of k. Hysteresis
occurs due to the interaction of the reaction rate (for the
precipitation and complex formation), diffusion of the electro-
lytes, and the coupling rate. When increasing k, the dominant
process is the precipitate formation behind the pattern due to
the high coupling, which reduces the diffusion of the invading
electrolyte. When decreasing k, the precipitate formation pro-
cess diminishes behind the pattern, and the evolution of the
pattern will be driven by complex formation. This process may
be accompanied with the precipitate formation in front of the
pattern, if the diffusion profiles of the outer electrolyte are
regenerated.

In the simulations, we varied k periodically over some
periods (Fig. 5). We observed that the values of ptot corres-
ponding to the maximal and minimal values of k have been
increased, compared to those of the first period. An interesting
feature (using a given parameter set) of the observed system is
that after the first loop, a periodic change of k results in the
periodic change of total amount of the precipitate. Analyzing
the evolution of Xc while varying the time dependent k in the
same way, a similar behavior of the center of gravity has been
found. Fig. 6 presents the evolution of the precipitation wave
over four periods. Position of the front and back section of the
wave and the center of gravity exhibit a forced time oscillation
according to the change of k. Time dependence of the back
section of the wave has different dynamics whenever the
variation of log k (in time) was linear, while decreasing or
increasing this control parameter. Note that the thickness of
the precipitation zone is related to the total amount of the
precipitate, therefore both of them exhibit the same behavior.

4. Conclusion

In this study, we have investigated the regular and moving
precipitation pattern formation in an open system using a
CSTR for the coupling of the inner electrolyte between the
reactive medium and reservoir. Evolution of patterns in both
cases, and the distortion of the existing laws (time and ‘‘uni-
versal’’ laws) due to the coupling coefficient have been inves-
tigated. The coupling of the inner electrolyte between the
CSTR and the reactive medium has a great impact on the
pattern structure. Variation of the coupling coefficient (k)
during the individual simulations resulted in a unique behavior
for the moving precipitation wave phenomenon: the pattern
structure and the corresponding characterizing quantities, the

total amount of the precipitate (ptot) and the center of gravity
(Xc) have hysteresis. This new result is a unique observation on
this research field. Compared to the Turing patterns which are
stationary ones, the above investigated moving precipitation
wave phenomenon in an open system represents dynamic
patterns. The spatial hysteresis of the Turing patterns has been
known for more than one decade. The novel result of our study
is that we observed the hysteresis phenomenon in a precipita-
tion system, which qualitatively differs from activator–inhibi-
tor or cubic autocatalytic systems, where Turing patterns have
been reported. The coming step in our study is to design the
experimental setup to validate our new predictions.
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11 H. J. Krug and H. Brandtstädter, J. Phys. Chem. A, 1999, 103,

7811.
12 R. Sultan and S. Panjarian, Physica D, 2001, 157, 241.
13 I. Das, S. Chand and A. Pushkarna, J. Phys. Chem., 1989, 93, 7435.
14 I. Das, A. Pushkarna and A. Bhattacharjee, J. Phys. Chem., 1991,

95, 3866.
15 L. Zeiri, O. Younes, S. Efrima and M. Deutsch, Phys. Rev. Lett.,

1997, 79, 4685.
16 I. Lagzi, A. Volford and A. Büki, Chem. Phys. Lett., 2004, 396, 97.
17 M. Fialkowski, A. Bitner and B. A. Grzybowski, Phys. Rev. Lett.,

2005, 94, 018303.
18 L. Pohlmann, A. Barkschat, H. Tributsch and J. K. Dohrmann,

Phys. Chem. Chem. Phys., 2003, 5, 1259.
19 L. Pohlmann, A. Barkschat, H. Tributsch and J. K. Dohrmann,

Phys. Chem. Chem. Phys., 2003, 5, 1264.
20 H. W. Morse and G. W. Pierce, Proc. Am. Acad. Arts Sci., 1903,

38, 625.
21 J. George and G. Varghese, Chem. Phys. Lett., 2002, 362, 8.
22 K. Jablczynski, Bull. Soc. Chim. Fr., 1923, 33, 1592.
23 S. Kai, S. C. Müller and J. Ross, J. Phys. Chem., 1983, 87, 806.
24 M. Droz, J. Magnin and M. Zrı́nyi, J. Chem. Phys., 1999, 110,

9618.
25 J. George and G. Varghese, J. Colloid Interface Sci., 2005, 282, 397.
26 R. Matalon and A. Packter, J. Colloid Sci., 1955, 10, 46.
27 T. Antal, M. Droz, J. Magnin, Z. Rácz and M. Zrı́nyi, J. Chem.

Phys., 1998, 109, 9479.
28 J. George, I. Paul, P. A. Varughese and G. Varghese, Pramana,

2003, 60, 1259.
29 F. Izsák and I. Lagzi, J. Chem. Phys., 2005, 122, 184707.
30 I. Das, A. Pushkarna and N. R. Agrawal, J. Phys. Chem., 1989,

93, 7269.
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