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Abstract. Formation of 1D Liesegang patterns was studied numerically in precipitation
and reversible complex formation of precipitate scenarios in an electric field. The Ostwald’s
supersaturation model reported by Büki, Kárpáti-Smidróczki and Zŕınyi (BKZ model) was
extended further. In the presence of an electric field the position of the first and the last
bands (Xn) measured from the junction point of the outer and the inner electrolytes can

be described by the function Xn = a1τ
1/2
n + a2τn + a3, where τn is the time elapsed

until the nth band formation, a1, a2 and a3 are constants. The variation of the total
number of bands with different electric field strengths (ε) has a maximum. For higher ε
one can observe a moving precipitation zone that becomes wider due to precipitation and
reversible complex formation.
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1. Introduction

Liesegang patterning is a well-known example of spatio-temporal pattern forma-
tion in reaction-diffusion systems [1,2]. Interdiffusion of two electrolytes and the
precipitation reaction between them produces the quasi-periodic patterns. One of
the electrolytes (called outer electrolyte) diffuses into the reaction space, which
contains the other one (inner electrolyte), and the precipitation process produces
rhythmic precipitation patterns. In the absence of an electric field, the time law

Xn = c1t
1/2
n + c2 [3] characterizes the evolution of the system. Here Xn is the

position of the nth band measured from the junction point of the electrolytes, tn
is the time of appearance of the nth band and c1 and c2 are constants. Many de-
tailed studies were performed to investigate the influence of geometry [4], the effect
of gravitational field [5,6] and the effect of moving boundary [7,8] on Liesegang
pattern formation. Recently, experimental pattern transitions have been found in
a Liesegang system [9]. Various precipitate pattern structures have been reported
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by Hantz [10–12]. Reaction of gas compounds can cause precipitate patterns in
aerogels, observed in ref. [13].

Electric field has a significant effect on the formation of Liesegang bands, because
the precipitation process is evoked by reaction of ions. This effect was studied in
various systems experimentally [14–21] and by numerical simulations [20–22]. Both
types of examinations showed that for the case of any electric field strength, the

kinetics of last band formation can be described by the function Xn = a1t
1/2
n +

a2tn + a3, where a1, a2 and a3 are appropriate constants.
Recently, Sultan and his co-workers [19,23–25] have presented experimental stud-

ies on some features and characteristics of the NH4OH/CoCl2/gelatine system. The
formed precipitate Co(OH)

2
(s) dissolves due to complex formation in excess ammo-

nia. Zŕınyi et al [26], Sultan and Panjarian [17] and Hilal and Sultan [27] observed
and studied experimentally similar patterns in NaOH/Cr(NO3)3, while Das et al

[28] performed it in KI/HgCl2 system.
The aim of this paper is to continue investigation of the new features of the

precipitation and complex formation scenarios in an electric field using numerical
simulation method.

2. Model

The simple skeleton mechanism of the precipitation and the complex formation is

A+(aq) +B−(aq) −→ P (s), (1)

P (s) +D(aq) −→ C(aq), (2)

C(aq) −→ P (s) +D(aq), (3)

where A+(aq) and B−(aq) are the ionic species (A+(aq) denotes the outer elec-
trolyte and B−(aq) denotes the inner electrolyte), P (s) is the precipitated product,
D(aq) is the complex forming species and C(aq) is the complex. We assumed that
the complex forming species and the complex do not have charge. Under the influ-
ence of an electric field the 1D Liesegang system is governed by the following set of
partial differential equations:

∂α

∂τ
= Dα

∂2α

∂x2
− zαε

∂α

∂x
−∆(Ks, L, αβ), (4)

∂β

∂τ
= Dβ

∂2β

∂x2
− zβε

∂β

∂x
−∆(Ks, L, αβ), (5)

∂γ

∂τ
= Dγ

∂2γ

∂x2
+ κ2πδ − κ3γ, (6)

∂δ

∂τ
= Dδ

∂2δ

∂x2
− κ2πδ + κ3γ, (7)

∂π

∂τ
= ∆(Ks, L, αβ)− κ2πδ + κ3γ, (8)
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where the symbols denote dimensionless physical quantities as follows: α, β, γ and
δ are the concentrations of A+(aq), B−(aq), C(aq) and D(aq), respectively, π is
the amount of the precipitated product P (s). Dα, Dβ , Dγ and Dδ are the diffusion
coefficients, zα and zβ are the charges of the ions A+(aq) and B−(aq), respectively.
κ2 and κ3 are chemical rate constants for the (2) and (3) reactions. The parameter
ε is the electric field strength, τ is the dimensionless time and x is the dimensionless
length. The function ∆(Ks, L, αβ) is defined by the following equations:

(i) If π = 0 (there is no precipitate at the grid point, precipitate formation),

∆(Ks, L, αβ) = ΣPΘ(αβ −Ks).

(ii) If π 6= 0 (there is some precipitate at the grid point, precipitate growth)

∆(Ks, L, αβ) = ΣPΘ(αβ − L),

where

ΣP =
1

2

[

(α+ β)−
√

(α+ β)2 − 4(αβ − L)
]

.

ΣP is the amount of the precipitate, which can be formed [29,30], L is the precipi-
tation product, Ks is the nucleation product and Θ is the Heaviside step function.
Partial differential equations (4)–(8) were solved numerically using a forward Euler
method with the following initial conditions:

α(τ = 0, x) = α0Θ(−x), β(τ = 0, x) = β0Θ(x), δ(τ = 0, x) = δ0Θ(−x)

and

π(τ = 0, x) = γ(τ = 0, x) = 0,

and with the following boundary conditions:

∂α

∂x

∣

∣

∣

∣

x=l

=
∂β

∂x

∣

∣

∣

∣

x=l

=
∂β

∂x

∣

∣

∣

∣

x=0

=
∂γ

∂x

∣

∣

∣

∣

x=l

=
∂γ

∂x

∣

∣

∣

∣

x=0

=
∂δ

∂x

∣

∣

∣

∣

x=l

= 0,

α|x=0
= α0,

δ|x=0
= δ0.

Here l is the length of the diffusion column; we chose in the simulations α0 =
δ0 = 60.0 and β0 = 6.0. Here we assigned the same initial concentrations for the
complex forming species and the outer electrolyte, and they diffused from outside
in the same way. The following parameter set was used in the simulation: Dα =
Dβ = Dγ = Dδ = 0.4, L = 0.100, Ks = 0.101, zα = 1, zβ = −1, κ2 = 1 × 10−4,
κ3 = 1× 10−8, l = 3360 and πmax = 5.0. Most of these parameters were proposed
and reported in the work of Büki et al [29]. The grid spacing and the time step
were ∆x = 0.8 and ∆τ = 0.05, respectively.

3. Results

Position of the first and the last bands are shown in figure 1. For the case of any
electric field strength the position of the first and the last bands, measured from
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Figure 1. Variation of the positions of the first and the last bands mea-
sured from the junction point of the two electrolytes with square root of time
at different values of ε. The solid line represents the fitted linear curve for
the electric field-free case. The dotted lines represent the fitted second-order
curves for various electric field strengths. The open and filled symbols corre-
spond to the last and the first bands, respectively.

Figure 2. Correlation plot of the distance of the last band vs. the first band
measured from the junction point of the two electrolytes at different values
of ε. The solid line represents the fitted linear curve for the electric field-free
case. The dotted lines represent the fitted second-order curves for various
electric field strengths.

the junction point of the two electrolytes can be described very accurately by the

function Xn = a1τ
1/2
n +a2τn+a3, where a1, a2 and a3 are constants. The first term

(a1τ
1/2
n ) corresponds to the diffusion and the second one (a2τn) to the advection.
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Figure 3. Evolution of 1D Liesegang patterns for various electric field
strengths: ε = −0.001 (bottom), ε = 0 (middle) and ε = 0.001 (top). The
lighter territory represents the amount of the precipitate.

Figure 4. Spatial distribution of the amount of precipitate measured from
the junction point of the outer and the inner electrolytes for three different
values of ε at τ = 5× 105: ε = −0.001 (bottom), ε = 0 (middle) and ε = 0.001
(top). The amount of precipitate for ε = −0.001 is one order lower than in
case ε = 0.

Therefore, it must be a1(ε)→ a1(ε = 0), a2(ε)→ 0 and a3(ε)→ a3(ε = 0), if ε→ 0.
These results are similar to that reported in refs [14–21] which mostly correspond
to the regular Liesegang pattern formation in an external electric field. Figure 2
shows the position of the last bands (dlb) vs. the position of the first bands (dfb).
The dependence of dlb on dfb is second-order in the case of ε > 0. In electric field-
free situation, the dependence of distance of the last band on the first one is linear
as displayed in figure 2 and shown experimentally [24].
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Figure 5. Dependence of the total number of bands (N) on electric field
strength (ε) at τ = 4× 105.

Figure 6. Existing patterns as a function of the initial concentration of the
inner electrolyte (β0) and the electric field strength (ε) at τ = 5 × 105. The
pattern formation was classified as (¥) no precipitation; (◦) moving Liesegang
bands; (N) precipitation wave and moving Liesegang bands; and (O) precip-
itation wave. (Parameters: α0 = δ0 = 60.0, Dα = Dβ = Dγ = Dδ = 0.4,
L = 0.100, Ks = 0.101, zα = 1, zβ = −1, κ2 = 1 × 10−4, κ3 = 1 × 10−8 and
πmax = 5.0.)

Figure 3 presents spatio-temporal evolution of Liesegang patterns and figure 4
shows the spatial distribution of P (s) in various electric field strengths. For higher
ε the first wide band propagates and grows thicker in time. Several bands after the
first wide band can be observed. As electric field strength increases, one can observe
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a crossover from moving Liesegang pattern (moving precipitation bands) to moving
precipitation pulse (traveling precipitation wave). The above phenomenon is driven
by the electric field strength (as a control parameter). The spatial distribution of
the precipitate has also Gaussian characteristics when ε < 0, but the amount of
the precipitate at the grid point is smaller than in the absence of an electric field.
Figure 5 illustrates the dependence of the total number of bands (N) on various
electric field strengths (ε) at the same simulation time. The bands are countable
if the amount of the precipitate at the grid point is higher than or equal to 0.01
(π ≥ 0.01). N increases to a maximum value and then decreases with the electric
field strength.

4. Conclusions

Several types of precipitation patterns can exist depending on ε, κ2, κ3, Ks, L, α0

and β0. It is trivial that at low α0 and β0 (or at high Ks, L) there is no pattern for-
mation, because the local concentration product of the electrolytes does not exceed
the nucleation (precipitation) product. In case of low κ2 the complex formation
of the precipitate does not play an important role. Therefore regular Liesegang
pattern formation is expected. The most interesting result can be observed, if the
electric field strength is changed. At very low (negative) ε (electric field retards
the diffusion of the invading electrolyte) there is no pattern formation due to the
spatial separation of the electrolytes. In the case of higher (still negative) ε, or
in the absence of an electric field, or for moderately positive ε moving Liesegang
patterns exist. At the same time for higher ε precipitation waves evolve. A detailed
numerical study has shown that the pattern formation is highly influenced by the
electric field strength and the initial concentration of the inner electrolyte. Figure 6
illustrates this dependence for some different values of ε and β0.

The novel features of numerical simulations are the following:

(i) In the case of applied constant DC electric field the position of the first and
the last bands can be described by the second-order function of the square
root of time.

(ii) The correlation between the distance of the last and the first bands are also
characterized by a second-order function for ε > 0.

(iii) The total number of bands increases to a maximum value and then decreases
as electric field strength is increased.

(iv) A crossover from moving bands to precipitation wave is reported as ε is
changed.
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