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Abstract

Radially symmetric pattern formation phenomena were investigated experimentally and numerically in 2D using a new experimental
arrangement in a precipitation system. We examined the dependence of the pattern structure and the evolution of the precipitation front
on its curvature. Depending on the radius of the reaction medium, two types of precipitation patterns has been observed: (a) pattern with
a continuously distributed precipitate and a well detectable precipitation-free domain (Liesegang eyes phenomenon); (b) pattern with a
continuous precipitation zone and discrete ring formation. Results of our simulations are in a good agreement with the experimental
observations.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Classical Liesegang patterns are produced in the wake of
a moving reaction front [1]. These structures are well-
known examples of spatiotemporal selforganization. In
the simplest situation, an electrolyte, called outer electro-
lyte, diffuses into a reaction medium (in the experiments,
it is usually a gel) and reacts with another electrolyte (inner
electrolyte) that is uniformly distributed in this medium.
The precipitation reaction between them produces an insol-
uble precipitate product, which is usually distributed qua-
siperiodically in the gelled medium. Studies on the above
phenomena are of great importance, since complex pat-
terns observed in chemical [2], biological [3,4] and geo-
chemical [5] systems can be described in the similar
manner.

The presence of precipitation bands or rings is related
to the geometry of the experimental setup [6–15]. Basic
geometrical arrangement of the experiments can be
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divided into two categories: planar and circular (spherical)
boundary conditions can be applied. In the first case (this
is the usual approach), one electrolyte is placed into a test
tube within a gel matrix, while the outer electrolyte is
placed on top of the gel column. Here, the precipitation
bands (1D) or parallel zones (2D, 3D) are expected to
be perpendicular to the diffusion front of the invading
(outer) electrolyte. In case of the 2D (or even 3D) radial
geometrical setup, the inner electrolyte is placed in a
gelled medium in a Petri dish and a solution of the outer
electrolyte is added into its center. The reaction front will
move from the center to the periphery of the dish produc-
ing separated precipitation rings behind. Empirical regu-
larities (time – [16], spacing – [17,18], width – [19,20],
and Matalon–Packter law [21–23]) describing the evolu-
tion and the final pattern structure, have been considered
in case of a planar motion of the reaction fronts. The
propagation velocity of the chemical waves is highly
depending on their curvature (curvature effect); this has
been studied for the chemical (BZ) waves in details [24].
This effect plays also an important role in the signal pro-
cessing in an excitable medium [25,26] and in the stability
of the chemical flame balls [27]. Although Liesegang pat-
terning is a heterogeneous process and in this respect it
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differs substantially from the excitable systems, it is inter-
esting and important to analyze the effect of the front cur-
vature on the pattern structure.

The aim of the present Letter is to investigate the evolu-
tion of the Liesegang pattern using a new radial geometri-
cal setup. In this concept, we have performed the
experiments in a completely new arrangement. The inner
electrolyte is placed in a gel disk of a small width and the
outer electrolyte diffuses from outside into a gel disk pro-
ducing various types of precipitation patterns. Numerical
simulations based on pre-nucleation theory were also per-
formed to explain our experimental results [28].

2. Experimental

An agarose gel disk swollen by 0.05 M KI solution with
thickness of 1.8 mm was prepared as follows. 0.40 g of aga-
rose (Reanal) was dissolved in 40 ml of distillated water.
The solution was heated to 80–90 �C and stirred until the
solution became crystal clear (approx. 5 min). The solution
was then poured into a Petri dish, which was hold firmly
horizontal to obtain a uniformly thick gel. After the com-
pletion of the gelation (approx. 15 min) the gel disks were
cut at different radii (4, 5, 6, 7 and 8 mm) and put into a
0.05 M KI (inner electrolyte) solution for 30 min.

One side of the disk was slightly smeared with silicon
grease and glued in this way to the bottom of the Petri dish.
This will also avoid the penetration of the outer solution
into the gel from this bottom side. The experiment was
started by pouring 0.5 M Pb(NO3)2 (outer electrolyte) solu-
tion around the gel, and taking extreme care not to allow
the solution to flow over the gel. As a result of this, the
outer solution can penetrate into the gel only from
sideward.

The pattern formation was monitored in transmitted
light from a neon lamp by a CCD camera (Panasonic
WV-CP410) connected to a computer. The pictures were
taken in every 30 s until the pattern evolution is completed.

3. Model and simulation

A simple (AB-type) precipitation process can be de-
scribed by the following chemical equation:

AðaqÞ þ BðaqÞ ! PðsÞ; ð1Þ
where P(s) denotes the precipitate. In case of a radially
symmetric experimental arrangement, the governing reac-
tion-diffusion equations are the following:
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for 0 < s < smax and 0 < r < R0. Here, a(s,r) and b(s,r) de-
note the concentrations, Da and Db are the diffusion coeffi-
cients of the species A(aq) and B(aq) associated to the
outer and the inner electrolytes, respectively, while p(s,r)
is the amount of the precipitate. In our description, all
these quantities were dimensionless. d(ab,K,L) is called
the precipitation reaction term, based on Ostwald�s super-
saturation theory [28]. The spatial variable r gives the dis-
tance from the center, while s is the time variable and N

gives the number of spatial dimensions. The second term
on the right hand side of the Eqs. (2a) and (2b) describes
the effect of curvature on the diffusion.

The precipitation reaction term d(ab,K,L) is defined as
follows [29,30] :

dðab;K; LÞ ¼
jdpHðab� KÞ if p ¼ 0;

jdpHðab� LÞ if p > 0;

�
ð3Þ

where j is the rate constant of the precipitation reaction
(1), K is the nucleation product, L is the solubility product,
and H yields the Heaviside step function. dp is increment of
the reaction product, and is calculated from equation
(a � dp)(b � dp) = L. The basic idea of the model is that
precipitation occurs only if the product of the concentra-
tions reaches the nucleation product (K). At the same time,
if previously formed precipitate is present, it promotes the
precipitation process, therefore, in this case the product of
the concentrations has to reach only a lower threshold (pre-
cipitation product L). Precipitate formation was limited in
the simulations, if p > pmax, the precipitation process was
stopped.

System (2a)–(2c) has been solved numerically using a
‘‘method of lines’’ technique. We can convert (2a)–(2c) into
a set of ordinary differential equations after spatial discret-
ization (finite difference) on an equidistant 1D spatial grid.
The produced ordinary differential equations have been
integrated in time using a second order Runge–Kutta
method while the system (2a)–(2c) has been equipped with
the following boundary conditions:
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for 0 < s < smax;

where a0 is the initial concentration of the outer electrolyte
and R0 is the radius of the reaction medium (gel disk),
respectively. This ensures a uniform flux of the invading
electrolyte from outside and the no-flux boundary condi-
tion for the inner electrolyte ensures that it is distributed
into the gel during the reaction. The following setup of con-
centrations has been chosen as initial conditions:

að0; rÞ ¼ 0; bð0; rÞ ¼ b0 and pð0; rÞ ¼ 0

for 0 < r < R0;

where b0 is the initial concentration of the inner electrolyte.
Initially, B(aq) is the only species in the reaction medium.
Most of the parameters in (2a)–(2c) were kept constant
as follows: Da = Db = 0.4, K = 0.11, L = 0.1, j = 103

and pmax = 5.0. The grid spacing and the time step
were Dr = 0.4 and Ds = 0.001, respectively.



Fig. 2. Experimental evolution of the precipitation fronts for different
radii of the gel disk (reaction medium). The dotted lines are the fitted
second-order curves. The solid line represents the linear curve fitted for the
first five points for R0 = 6 mm.
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4. Results and discussion

Fig. 1 shows the precipitate distributions governed by
curvature of the reaction fronts for two radii of the gel
disk. Two different types of patterns can be observed
depending on the radius of the reaction medium. In case
of smaller radii, a continuous precipitation front evolves.
Increasing the radius, additionally, a family of rings devel-
ops. Nevertheless, in all cases the center of the gel disk does
not contain precipitate, because the fast precipitation pro-
cess (compared to the diffusion) depletes the inner electro-
lyte in the vicinity of the front. Accordingly, by and by the
inner electrolyte fully reacts in the reaction medium. There-
fore, the front stops and leaves in the center of the gel disk
a strict and well visible precipitation-free domain. We call
the formation of such patterns the Liesegang eyes

phenomenon.
Now, we will focus on the evolution of the PbI2 pattern

in the experiments. The most trivial regularity from the
existing laws is the time law, which describes that the posi-
tion of the nth band (measured from the junction point of
the electrolytes) is linearly proportional to the square root
of time elapsed until its formation, i.e., Xn / t1=2n [16,18].
This law applies to all geometries where the reaction front
is closely planar. We have monitored the evolution of the
precipitation front instead of ring formation, because the
formation of distinct zones is absent for smaller radii.
The precipitation density distribution has been determined
by an image processing system. The evolution curve show-
ing the position of the precipitation front versus the square
root of time is displayed in Fig. 2. According to the gener-
ally accepted time law, the above curve is linear as long as
the front is planar. In our case, however, the fronts are cir-
cular, and velocity of the precipitation front propagation
(vs. square root of time) is accelerated due to the curvature
effect. During the evolution, the curvature of the front is in-
creased, which results in higher and higher diffusion flux. It
should be noted that despite of the increased mass flux of
the invading electrolyte, the pattern formation is stopped
Fig. 1. The two-dimensional precipitation patterns of lead iodine in agarose ge
1 cm.
if the precipitation process depletes the inner electrolyte
in the gel disk.

In case of continuous precipitation, the relative size of
the precipitation-free hole has a regularity, if we pose the
following assumptions:

(a) the investigated system is two-dimensional and satis-
fies the mass conservation law;

(b) all species of the inner electrolyte B(aq) transform
into precipitate (the non-reacted part is negligible to
the initial one);

(c) the density of the precipitate ð�pÞ is constant behind
the reaction front and does not depend on the
curvature.

Using (a)–(c), we obtain the following relation:

ðR2
0 � r20Þp�p ¼ R2

0pb0;
l at 22.0± 1.0 �C: R0 = 4 mm (left) and R0 = 7 mm (right). The scale bar is
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where b0 is initial concentration of the inner electrolyte, R0

and r0 are the radius of the reaction medium and precipita-
tion-free domain, respectively. We can rewrite the equation
above as

r20
R2
0

¼ �p � b0
�p

; ð4Þ

which states that the quotient of the radius of the precipi-
tation-free and the reaction domain should be constant, if
all parameters of the system except of the domain radius
(R0) are fixed. Our investigation cleared that continuous
precipitation zone formation is preferred at smaller temper-
ature. Therefore, these experiments were performed at
8.8 ± 0.2 �C. The validation of our predictions is shown
Table 1
Dependence of r20=R

2
0 on radius of the reaction domain

R0 5 mm 6 mm 7 mm 8 mm

r20=R
2
0 4.27 · 10�2 5.29 · 10�2 5.26 · 10�2 5.63 · 10�2

Fig. 3. Results of the numerical simulations: the two-dimensional
precipitation patterns at R0 = 4 (a) and R0 = 16 (b).
in Table 1. The quotient of the corresponding radii can
be considered constant within an experimental error. This
simple consideration makes possible to estimate the aver-
age density of the precipitate ð�pÞ behind the reaction front,
because in the relation (4) b0 is known, while r0 and R0 are
measurable in the experiments.

Compared with the experimental results, numerical sim-
ulations exhibit a similar trend with respect to the radius
dependent pattern structure and its evolution. Fig. 3 pre-
sents the 2D precipitate distribution for two different do-
mains. The time law in a 1D setup states that the
position of the precipitate bands vs. the square root of their
appearance time is linear. In the radial 2D case, however,
the diffusion term in (2a)–(2c) consists of two part, where
the second one N�1

r , associated to the curvature effect, is
Fig. 4. Simulated evolution of the precipitation patterns for different radii
of the reaction medium (a) fixed the initial concentration of both
electrolytes and simulated evolution of the precipitation patterns for
different initial concentration of the outer electrolyte (b) fixed the initial
concentration of the inner electrolyte and the radius of the reaction
medium. The dotted lines represent the fitted (a) second- and (b) third-
order polynomials, while the solid line is the fitted linear curve in a 1D
simulation. Xn is the position of the nth precipitation band measured from
the junction point of the electrolytes, while s is the appropriate formation
time.



Fig. 5. Simulated evolution of the precipitation patterns for different
spatial dimensions by fixed initial concentration of the electrolytes and the
radius of the reaction medium. The dotted lines are the fitted third-order
curves. The solid line represents the fitted linear curve in 1D simulation. Xn

is the position of the nth precipitation band measured from the junction
point of the electrolytes, while s is the appropriate formation time.
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usually not negligible. The decrease of R0 generates a more
and more pronounced deviation from the linear time law
(Fig. 4a). This distortion can be described very accurately
by a second-order function, according to the experiments.
We have also investigated the effect of the outer electrolyte
concentration on the evolution of the precipitation pattern
for fixed R0 (Fig. 4b). Increasing the concentration results
in an accelerated evolution and approximates a linear
dynamics. By increasing the spatial dimension (N), the sec-
ond term in 2a and 2b, associated to the curvature effect,
becomes more significant, which can recognized as a faster
front propagation (Fig. 5).

In conclusion, we reported the important role of the cur-
vature effect for the pattern structure and evolution in pre-
cipitation systems. Experiments were performed using a
new two-dimensional experimental setup with radial
arrangements by varying the radius of the reaction med-
ium. Numerical simulations were carried out with the
appropriate initial and boundary conditions in two and
three dimensions. Moreover, we proceed in higher dimen-
sions: this theoretical study helped us to point out the effect
of the curvature on the evolution dynamics. The curvature
effect and final pattern structures found in the model calcu-
lations and in the experiments have shown a good agree-
ment. In addition, we provided a new simple method to
estimate the average amount of the precipitate behind the
front using only geometrical measurements.
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[6] H.-J. Krug, H. Brandtstädter, J. Phys. Chem. A 103 (1999) 7811.
[7] R. Sultan, S. Panjarian, Physica D 157 (2001) 241.
[8] I. Das, S. Chand, A. Pushkarna, J. Phys. Chem. 93 (1989) 7435.
[9] I. Das, A. Pushkarna, A. Bhattacharjee, J. Phys. Chem. 95 (1991)

3866.
[10] L. Zeiri, O. Younes, S. Efrima, M. Deutsch, Phys. Rev. Lett. 79

(1997) 4685.
[11] U. Sydow, P.J. Plath, Ber. Bunsenges. Phys. Chem. 102 (1998)

1683.
[12] F. Arteaga-Larios, E.Y. Sheu, E. Perez, Energ. Fuel. 18 (2004)

1324.
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