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Abstract: A stochastic cellular automaton is developed for modeling waves in excitable media.
A scale of key features of excitation waves can be reproduced in the presented framework such
as the shape, the propagation velocity, the curvature effect and spontaneous appearance of target
patterns. Some well-understood phenomena such as waves originating from a point source, double
spiral waves and waves around some obstacles of various geometries are simulated. We point out
that unlike the deterministic approaches, the present model captures the curvature effect and the
presence of target patterns without permanent excitation. Spontaneous appearance of patterns,
which have been observed in a new experimental system and a chemical lens effect, which has been
reported recently can also be easily reproduced. In all cases, the presented model results in a fast
computer simulation.
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1 Introduction

Experimental and numerical study of excitable systems has a long tradition. In life sci-

ences, spatiotemporal spread of epidemic diseases or migration of some species can also

be successfully simulated by considering the population or the territory as an excitable

system. In the study of reaction-diffusion systems, propagation of chemical waves can

be put into this framework. For a broad overview on excitable systems and for further

literature we refer to [1, 2]. The underlying reaction-diffusion mechanism is usually mod-

elled using a system of partial differential equations. In general, they perform well [1], but

programming a proper numerical solver can be rather complicated and the computational

simulations are time consuming (especially, in case of 3 dimensions).

The basic framework is the cellular automata (CA) models which have significantly

improved in the last decades. Besides the relatively low computational cost of these

models, they are popular also due to their generality and simple setup.

The development of the CA models can be directed to the qualitative simulation of

some phenomena such as diffusion [4], some reactions [5] and pattern formation [4, 6, 7],

neural signal transport [5], highway traffic [8, 9], “pedestrian dynamics” [10], propagation

of forest fires [11] or epidemic diseases [12, 13].

A stochastic CA model has been initiated in [14], and developed in many aspects. For

a broad overview of stochastic CA we refer to [5]. Using another model, the conservation

of mass was ensured in [15] and an adaptive modeling was developed in [16]. Some

computer programs are available in [17, 18], which can be used to simulate excitation

waves in Belousov–Zhabotinsky type (BZ) reactions or the spread of infectious diseases.

In this paper, we present an improved cellular automata model and begin with the

simulation of two phenomena: propagation of excitation waves from a single point and

formation of double spirals. Moreover, we point out the curvature effect. These present

our model as an appropriate tool for the simulation of special phenomena. The aim of our

investigation is to simulate the propagation of excitation waves around some obstacles,

the formation of target patterns without external excitation and a lens effect for excitation

waves.

A simple and useful algorithm to simulate excitation waves in BZ reactions is called

the “hodgepodge machine” [19], which can be used with a random initial data resulting

in wave phenomena [20, 21]. Note that the transition rules in these models remain

deterministic. We combine here the basic ideas of [14] and some details in the systematic

study in [6, 7]: we insert a fully probabilistic approach into a detailed model of excitable

systems which results in a successful simulation of the above phenomena within a single

framework.

2 The model

In the presentation of CA, we follow the approach in [4] and make use of the detailed

study in [23] by extending it to include stochastic elements.
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A cellular automaton consists of a set L of cells, which are usually represented with

unit squares or even with their midpoints in a coordinate system. Each cell l ∈ L should

have a fixed state at a given time; the set of the states is denoted by Q.

In our case,

L ⊂ {(c1, c2) : c1 and c2 are positive integers}.
The time evolution of the system is driven by the interaction between the cells and

their neighbors l1, l2, . . . , ln. Basically, in the classical cases, the time step is characterized

by a function f : Q × Qn → Q, which gives the state of a given cell in the subsequent

time step depending on its present state (first component) and that of its neighbors (last

n components).

Note that the number n can be different for some cells: it can be reduced near the

boundaries or walls depending on the geometry of the investigated media. The cells

can represent individual species [24], small segment of a forest [25], a micro-volume in a

reaction space [7].

In our model, the possible states are given as:

Q = {q−1 “refractory”, q0 “resting”, q1 “active”}.

In real-life situations, active cells describe small segments where reaction occurs or an

infected individual is present. Resting state is the simple interpretation of those segments

where the above phenomena are not present but could turn into an active state by the

neighbors. In the literature, instead of “active” one frequently uses the term “excited”,

and accordingly, refractory cells are often called non-excitable ones. In this context, the

boundary of the region formed by the active cell is called “front”.

For a cell l = (c1, c2) we define the neighbors as follows: l2, l4, l6 and l8 denote the

neighbors which share an edge with l and l1, l3, l5 and l7 denote those which has only one

common vertex with l.

The time step f : Qd × Qn → Q depends now also on the “past” of a given cell (over

d time steps). Corresponding to real life cases, we prescribe in this way that each cell

remains in the refractory state over d1 time steps. Similarly, the number of the time steps

while a cell resides in the active state is denoted by d2 and with these, d := max{d1, d2}.
We suppose that any cell can turn into the active state (loosely, say, it can be infected)

by its neighbors in the square lattice with a certain probability:

- l can infect l2, l4, l6 and l8 (any of its edge neighbors) with probability p,

- l can infect l1, l3, l5 and l7 (any of its vertex neighbors) with probability αp,

with an appropriate parameter α such that for the front of the active cells, the uniform

propagation velocity, or, in mathematical terms, uniform expected propagation length is

ensured in all directions. A straightforward computation gives the possible pairs (p, αp):
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Table 1 Parameters for the propagation probabilities over the edges (p) and vertices (αp)

of an active cell.

p 0.15 0.2 0.25 0.3 0.35

αp 0.04 0.0492 0.056 0.06 0.06

We define the step function depending on the actual state of cells. Let ai denote the

state of the cell l at the preceding i-th step (i = 1, 2, . . . , d) and let bj denote the state of

its neighbor lj at the actual time step (j = 1, 2, . . . , 8).

• An active cell will turn into

· refractory state if it was active during the preceding d2 time steps.

· active state if it was not turning into active state d2 time steps ago.

• A refractory cell will turn into a

· resting state if it was refractory during the preceding d1 time steps.

· refractory state if it was not turning into active state d1 time steps ago.

• A resting cell will turn into a

· resting state if none of its active neighbors infects it, which occurs with a certain

probability.

Formally: If a1 = q0 then

P [f(a1, . . . , ad; b1, b2, . . . , b8) = q0] = (1 − p)k1(1 − αp)k2,

where k1 is the number of its active neighbors which has a common edge with

l: k1 = #{j ∈ {2, 4, 6, 8} : bj = q1} and k2 is the number of its active neighbors

which has a common vertex with l: k2 = #{j ∈ {1, 3, 5, 7} : bj = q1}.
· active state if one of its neighbors infects it, which occurs with a certain proba-

bility.

Formally: If a1 = q0 then

P [f(a1, . . . , ad; b1, b2, . . . , b8) = q1] = 1 − (1 − p)k1(1 − αp)k2 ,

with k1, k2 defined above.

3 Simulation results, discussion

In this section, we discuss the results from a set of test cases motivated by some interesting

phenomena studying excitation waves in BZ reactions. First we point out that using the

above framework, some simple geometries of excitation waves can be simulated such as

a circle shaped single wave and formation of double spirals. Moreover, the variation of

propagation speed (curvature effect) is investigated. Afterwards, we present simulations

of more unique phenomena which have been also observed in real experiments. For a
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comparison, we refer to these in each test case. The simulations have been executed with

dimensionless quantities. In a concrete situation, one can adjust the parameters using

the following considerations:

• The choice of the parameters p and αp should lead to an isotropic propagation. For

some suitable pairs, see Table 1.

• The quotient of d1/d2 gives the ratio of the active and the refractory zones in the

simulations. In the experiments, it is a measurable quantity (depending mainly on

the initial concentration setup), and accordingly, one can find an appropriate pair

(d1, d2) for the simulations.

According to the formal transition rules defined in the previous section, the states of the

cells were determined in consecutive time steps using a Monte Carlo simulation.

Test case 1.

First we simulated an excitation wave induced by a point source and the evolution of the

active state was investigated, which corresponds to an excitation wave (Figure 1 (a), (b)).

The probabilities p and αp in the transition rules were p = 0.35 and αp = 0.06,

respectively, with the same length d1 = d2 = 8 of the refractory and the active period,

respectively.

Using the stochastic approach, the shape of the reaction front corresponds to the

observations. Apart from some noise, the reaction front will be radially symmetric after

a transient period, such that the propagation velocity is the same in all directions. For

the corresponding simulation see Figure 2.

The average of the positions of a planar front depending on the time step are depicted

in Figure 3 (� symbols). The case of constant propagation velocity corresponds to the

slope of the dotted line which has been fitted to the observed data.

In a similar way, we analyzed the evolution of a radially symmetric front of active

cells according to Figure 1 (a), (b). When we computed the average distance from the

midpoint, we took into consideration those active cells which have at least two resting

neighbors. The curvature effect is demonstrated in the way that a linear curve was fitted

to the first 6, 12 and 24 observations, respectively. The slope of these lines approaches

the propagation velocity of the planar front. These results are shown in Figure 3.

Note that for these qualitative results, it is essential that we used a stochastic model

with the parameter set in Table 1. Otherwise, the geometry of the cell network will

highly influence the shape of the active zone. For a visible comparison, we also simulated

the above excitation waves using a deterministic approach, which can be interpreted as

a special probabilistic approach with p = αp = 1 (see Figure 1 (c), (d)). These results

correspond to the ones in [23].

We have also simulated the formation of double spiral waves (Figure 4 (a), (b), (c)).

“Spiral waves” have been observed in many experimental setups, and simulated using

deterministic [27] and stochastic [28] models. For a solid theoretical framework see [29].
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(a) (b)

(c) (d)

Fig. 1 Simulation of excitation waves originated from a point source corresponding to

Test case 1. Black: active cells, grey: refractory cells. Length of active and refractory

states: 8 time steps. (a), (b): simulation results using our probabilistic approach with

the parameters p = 0.35 and αp = 0.06 in 44 and 154 time steps, respectively; (c), (d):

simulation results using a deterministic approach after 24 and 80 time steps, respectively.

The probabilities p and αp in the time stepping function were chosen to be 0.25

and 0.056, respectively, with the active and refractory period d1 = 20 and d2 = 100,

respectively. The simulation was initialized by a single active cell. After some steps, one

half of the formed active and refractory region was removed and substituted with resting

cells.

The shape of the active zone is again in good accordance with the results of the

real experiments [26]. In this test case, it is essential when half of the formed pattern is

removed (see Figure 4 (a)). If the diameter of the initial half-circle is smaller than d1 +d2,

no double spiral evolves. In this case, the active front returning to the midpoint cannot

make the cells active here, as they are still in refractory state.

Test case 2.

In this case, we modeled the propagation of the active zone around obstacles of various

shapes (Figure 5 (a), (b), (c)). We have chosen the probabilities p = 0.25 and αp = 0.056,

and the length of the active and refractory period were d1 = 20 and d2 = 80, respectively.
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Fig. 2 Propagation of straight fronts in several directions after 150 (left side) and 900

(right side) times steps, respectively. The simulations were initiated for strips with some

different angles related to a fixed grid. The unit in the reference grid is 50 cells. Black:

active cells, grey: refractory cells. Simulation parameters: p = 0.25 and αp = 0.056.

Initially, a strip perpendicular to the obstacle was filled with active cells which initiate

fronts propagating both in forward and backward directions. After some time, the back

section was removed. According to the theoretical [29, 30] and experimental [31] investi-

gations, the zone of the active cells are involutes of the obstacle (arcs in case of polygonal

obstacles). Some of the theoretical results refer to constant velocity field. Indeed, if the

curvature is small enough then its effect can be neglected [32] (see Figure 2 therein).

For the corresponding experimental studies, we refer to [33, 34, 36–38] and for numerical

simulations see [39]. Our simulations are in good accordance with these experiments, see

Figures 5 (a), (b) and (c).

We also provided a statistical analysis to point out that a reaction front according

to Figure 5 (c) consists of arcs centered at the vertices of a slightly bigger square. We

considered the cells being in anactive state and we analyzed their distance measured

from the vertices. For the data see Figure 6 (a) and (b). Here cells which belong to the

flat region of Figure 6 (a) and (b) were considered as the cells in the smaller and the

bigger “arcs”, respectively. The number of these cells is 9780 and 26000, respectively. We

computed the corresponding sample variances ŝ1 and ŝ2 of the distances for both “arcs”.

We obtained ŝ1 = 9.81 for the smaller arc and ŝ2 = 12.91 for the bigger one. Since
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Fig. 3 Curvature effect in the simulations. The symbols � and � show in each time step

the average position of a planar and radially symmetric front of active cells, respectively.

The slope of the dotted line corresponds to the constant propagation velocity of the planar

front. In case of radially symmetric front, the lines (a), (b) and (c) have been fitted to

the average positions of the front in the first 6, 12 and 24 time steps, respectively. The

parameters in the simulation are the same as in Fig. 1.

(a) (b) (c)

Fig. 4 Simulation of double spiral formation using the parameters p = 0.25 and αp =

0.056. Black: active cells, grey: refractory cells. At the beginning, a single cell was active.

Length of active state: 20 time steps, length of refractory state: 100 time steps. (a): after

80 time steps, one half of the active and refractory cells was replaced by resting ones. (b)

and (c): evolution of the system after 183 and 631 time steps, respectively.

the length of the active state is 40 time steps in the simulation, this confirms the visual

impression that the reaction front consists of arcs. Note that the distance data should

not be normally distributed since the outward periphery of the active zone consists of

more cells than the inward one.
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(a) (b) (c)

Fig. 5 Propagation of excitation waves around a circle (a), a triangle (b) and a square

(c) (corresponding to Test case 3 ) using the parameters p = 0.25 and αp = 0.056.

Black: active cells, grey: refractory cells. Length of active state: 20 time steps, length of

refractory state 80 time steps. Initially, a strip (perpendicular to the obstacle) was filled

with active cells and after a few time steps, the left half of the active region was removed

and replaced by resting cells. Evolution is shown after 1474 (a), 1829 (b) and 1972 (c)

time steps, respectively. The corresponding evolvent and arcs are fitted in each figure

according to [31].

(a) (b)

Fig. 6 Distance of the active cells in an increasing order measured from vertex 1 (upper

right) (a) and vertex 2 (upper left) of the square according to the test case in Figure 5 (c).

Length of the active state: 40 time steps, p = 0.25, αp = 0.056, evolution time: 2500 time

steps.

Test case 3.

In the framework of the above model, we could reproduce a unique phenomenon which

can hardly be simulated using any deterministic approach. In some real experiments,

“target patterns” can be detected, in more precise terms: the whole active region consists

of concentric circles which propagate outward. These are usually considered as degener-

ated double spirals. Under some circumstances, such a pattern can appear without any

externally forced initial excitation in its center [26].
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(a) (b)

Fig. 7 Concentric target pattern without permanent excitation (corresponding to Test

case 4 ) using the parameters p = 0.35 and αp = 0.06, respectively. Initially, a couple of

cells in the central region were in the active state. Evolution is shown after 23 (a) and

114 (b) time steps, respectively. Length of active state (black): 10 time steps, length of

refractory state (grey): 3 time steps.

Using a deterministic approach, only one front of active cells appears, followed by the

zone of refractory cells (cf. Figure 1 (d)). Therefore, in the deterministic simulations,

usually a permanent artificial excitation is applied to simulate target patterns [40]. In

our approach, however, the excitation can arise in a natural way without any external

forcing. Due to the probabilistic transition rules, some cells become active with a time

delay. If the length of the refractory period is short compared to the active period,

then a refractory cell can become resting at the back of the active zone. This resting

cell has a neighboring active one which can infect it again. Usually, it occurs as soon

as the first generation of the refractory cells becomes resting again such that the same

initial cells will be active. One can thus observe a periodically active centrum without

any external forcing. Note that using an external forcing may result in a rather complex

behavior: presence of twisted spirals and front reversal has been predicted, which can

also be controlled [35].

In course of the simulation, we used again p = 0.35 and αp = 0.06, with the parameters

d1 = 10, d2 = 3. The results are shown in Figure 7 (a), (b).

Test case 4.

We have also simulated the spontaneous appearance of spirals and target patterns [36]

using the parameter set p = 0.35, αp = 0.06, d1 = 10 and d2 = 3, respectively. In several

situations (e.g. in supersaturated or excitable media), physical and chemical processes

are initiated by a small random perturbation of the system.

Accordingly, in our simulation, a randomly generated new excited cell was placed

in the domain in each time step with uniform spatial distribution. In this way, after

some time, target patterns, spirals and double spirals can appear. A simulation result is

depicted in Figure 8.
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Fig. 8 Formation of multiple target patterns using the stochastic cellular automata model

corresponding to Test case 4 with a periodic random excitation. Black: active cells, grey:

refractory cells. In every tenth time step, a new excited cell was placed in the domain

with uniform spatial distribution. Simulation parameters: p = 0.35 and αp = 0.06.

Pattern formation phenomena in a precipitation system may produce similar struc-

tures. Our new experimental investigations [41] have shown the coexistence of precipi-

tation process and excitability without any external forcing. Spontaneous appearance of

travelling waves and spiral formation inside of the precipitation front was thus described

for the first time. The dynamics and spatial structure of the observed traveling waves

suggest the similar origin of BZ waves and the phenomena in [41]. The result in a real

experiment is depicted in Figure 9.

Test case 5.

Recently, it has been reported that precipitation fronts and excitation waves may produce

a refraction-like behavior [42]. It has been shown that precipitation patterns generated by

diffusion front travel through spatial discontinuities similar to their optical counterparts,

and obey a Snell-like law.

A chemical lens based on a refraction phenomenon, which corresponds to the geo-

metrical wave theory was realized experimentally in a BZ system. For details, see [43].

The propagation velocities are different inside and outside the lens: the wave starting

from one given point of the outer “faster” medium is refracted and forms a circular front

traveling inwards, collapsing at a given point of the inner “slower” medium. Refraction

of chemical waves are explained by simple geometrical arguments [43], and this effect can

be successfully reproduced in numerical simulation using our CA model. Accordingly,

we have chosen smaller parameters for the propagation velocities inside of the lens, by

multiplying both probabilities with 0.45 such that the ratio of the propagation velocities
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Fig. 9 Formation of target patterns inside the aluminum hydroxide precipitation surface

in agarose gel (of thickness 6.4 mm) which contains 0.30 M AlCl3. After the gelation

process, the outer electrolyte (NaOH of concentration 2.50 M) was placed on top of the

gel surface. After several minutes, a well defined self-organization appears. The scale bar

represents 1 cm.

inside and outside of the lens corresponds to the experimental observation in [43]. This

reduces the thickness of the active and refractory zones, whenever the lengths of the re-

fractory and active states were unchanged. The results of the experiment and simulation

are shown in Figure 10 (a) and Figure 10 (b), respectively.

We may Summarize the work reported in this paper as follows. Combining a standard

model of excitable systems with a fully probabilistic approach, we improved the existing

models in some aspects:

• In our model we can prescribe the length of the active or refractory states for the

cells.

• We can avoid the rather unrealistic property of many simulations namely, that the

shape of the active zone inherits the geometry of the cell network. After a transient

time, the shapes of these zones will be smooth apart from some fluctuations.

• We combined the simple geometry of the cell network with the isotropic wave prop-

agation property using probabilistic parameters.

• We could reproduce the curvature effect on the propagation speed and rotating

excitation waves around some obstacles within the cellular automata framework,

which allows fast simulation.

• We could simulate the formation of target patterns without a permanent external

excitation and a lense effect for excitation waves.
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(a) (b)

Fig. 10 Chemical lens effect in experiments (a) and in CA simulations (b). The details of

the experimental setup can be found in [43]. Parameters in the simulation: p = 0.35, αp =

0.06 outside of the lens, p = 0.1575, αp = 0.026 inside of the lens with 40-40 time steps

for the length of refractory and active states, respectively. The time delay between the

consecutive reaction fronts equals to 200 time steps.
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