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The width of Liesegang bands: A study using moving
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Abstract. The pattern formation in reaction–diffusion systems was studied by invoking the pro-
visions contained in the moving boundary model. The model claims that the phase separation
mechanism is responsible for separating the colloidal phase of precipitants into band and non-band
regions. The relation between the band separation and its width are invariably related to the con-
centration of the reacting components. It was observed that this model provides critical condition
for the band formation in semi-idealized diffusion systems. An algorithm for generating the band
structure was designed, and the simulated pattern shows a close resemblance with the experimentally
observed ones.
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1. Introduction

Nature has a wide storage of colourful patterns which are originated mostly by self-
organized processes without the intervention of external templates [1]. The patterns tell
us much about the dynamics, both at the macroscopic as well as at the microscopic lev-
els of the underlying system. Because of its importance, pattern formation has received
wide attention from people working in different areas of biology, chemistry, physics and
geology. The spatio-temporal patterns observed in many reaction–diffusion systems pro-
vide an excellent area to study these phenomena, and the advanced computer techniques
give scope for simulating the structures based on theoretical models. The quasiperiodic
structure, reported first by Liesegang in 1896, is regaining its importance due to its applica-
bility in engineering mesoscopic and microscopic structures [2]. These studies are opening
up new possibilities in the control and design of structures by reversing the processing
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order from the bottom-up approach to top-down methods in microelectronic device fabri-
cations [3]. In recent years the interest in self-organized structures is growing, triggered by
the idea of cheap and fast production of nanoscaled devices. One of the promising effects
for obtaining such devices in Liesegang pattern formation is based on reaction and diffusion
processes. In addition, the Liesegang phenomenon is an interesting research topic on its
own due to the simple patterns arising out of complicated reaction and diffusion processes.
A scientific understanding of pattern formation seems to be one of the most exciting aspects
of non-linear dynamics.

The diffusion of a chemical reagent into a medium, most generally a gel medium, and the
subsequent precipitation with another component that the gel medium contains, will gener-
ate periodic patterns under favourable conditions. Pattern formation in a reaction–diffusion
system is considered as a self-organization phenomenon and the patterns are stationary in
the sense that the bands are ‘locked’ in the position once they are formed. In this context,
some researchers have considered the Liesegang structures as Turing-type patterns [4–10].
Since the 1952 theoretical work of Alan Turing, it is known that self-activated reactions
with long-range inhibition process can spontaneously lead to the formation of stationary
symmetry breaking patterns [11]. Under appropriate conditions, a spatially homogeneous
state can be stable in the absence of diffusion and unstable in the presence of diffusion. An
appropriate reaction network is capable of exhibiting spatially inhomogeneous state, i.e.
pattern. The phenomenon in which diffusion destabilizes a spatially homogeneous steady
state is termed as diffusion-driven or Turing instability. But many experimental observa-
tions support the argument that the initial form of the precipitants appears as colloids and its
coagulation plays a vital role during the early stages of Liesegang ring formation [12,13].
Flicker and Ross [14] describe the mechanism of chemical instability as a reason for the
periodic pattern formation. In mean-field theories, reaction–diffusion (partial differential)
equations can describe the dynamics of the system taking into account diffusion of elec-
trolytes and nucleation and aggregation of the precipitant species. Randomizing impacts
like thermal fluctuation, presence of impurities, etc., are usually ignored in these models.
Altogether, it is evident that quite diverse mechanisms can be at the helm of affairs of chem-
ically generated patterns. They may also include even more physical aspects like buoyancy
instabilities, surface tension, non-linear colloidal dynamics, etc., as the list of attributes.

The patterns usually consist of a set of clearly separated zones of colloidal precipitants,
the shape of which depends on the geometry of the system. In typical systems that pro-
duce Liesegang patterns, the reacting components diffuse from outside to the gel medium
impregnated homogeneously with the oppositely charged electrolyte species. The sparingly
soluble precipitate of the chemical reaction coagulates at specific locations resulting in a
sequence of precipitate bands. Precipitate moves diffusively into the zone and the dynamics
can be described by a set of equations. Earlier investigators have framed four quantitative
relations characterizing the pattern structure.

The first one relates the position of the ring (xn) and its formation time (tn) by a relation
often called time law [15,16].

xn = αt1/2
n + β, (1)

where α and β are the constants. This relation is analogous to Einstein–Smoluchowski rela-
tion for Brownian motion, interpreted in terms of random walk in homogeneous space [17].
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The time law reflects the diffusive behaviour of the electrolyte into the gel matrix. The sec-
ond one called the spacing law, is due to Jablczynski [18], which relates another important
property of the bands

xn+1

xn
= (1 + p), (2)

where (1 + p) is the spacing coefficient and the factor p depends on the initial concentration
of the reacting components. It has been observed in many experimental cases that p varies
from 0 to 0.5 [19]. A detailed study of the dependence of p on concentration was made by
Matalon and Packter [20,21].

According to them,

p = �(b0) + a−1
0 �(b0), (3)

where �(b0) and �(b0) are two decreasing functions of their argument. Also the width or
thickness (wn) of the bands has some functional regularity [22]:

wn = εxn, (4)

where ε is a constant.
Many models, that provide theoretical prediction on the band formation was failed to

provide conclusive suggestions on the domain size of the coagulated precipitants. Using
cellular automata simulations, Chopard et al [23] have proposed

wn = εxφ
n , (5)

where the width exponent φ depends on two constants a0 and b0. They have obtained
theoretically the band structure for φ varying between 0.49 and 0.61. Later, Droz et al [24],
combining the scaling properties of the density of precipitates in the bands, found that φ

ranges from 0.90 to 0.99, which almost coincides with the linear dependence as suggested
by eq. (4). Our goal here is to present an algorithm on pattern formation and predict the
structure quantitatively with reasonably minimum inputs.

2. Theoretical methods

Several competing theories have been developed for describing the mechanism of
Liesegang phenomena. All the theories share some common features to show how the
diffusive reagents A and B turn into a final immobile precipitate D.

A + B → D. (6)

Some theorists strongly prefer to place an intermediate compound (C′) as an inevitable
component formed before the end product is reached [25].

A + B → C′ → D. (7)

Theoretical models can be grouped into two main categories. The first termed the pre-
nucleation model, suggest that band formation can be treated on the basis of a feedback
mechanism between the nucleation and diffusion transport [26–28]. Nucleation is a non-
equilibrium process, and it occurs when the local product of the ion concentrations of
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the reacting species reaches a saturation threshold value. The precipitation results in the
reduction of the level of the supersaturation and no further nucleation is possible when the
concentration product is less than the threshold limit. While the front proceeds further into
the medium, the concentration product reaches the threshold level again and the nucleation
of the precipitate is continuous. Repetition of this sequence results in periodic patterns.
Theoretical predictions based on this model were made earlier by Wagner and Prager, and
they assumed the existence of sharp periodic bands.

The second category, using Lifshitz–Sloyzov instability mechanism [29–31], suggests a
post-nucleation droplet coarsening processes. The continuously advancing nucleation front
produces an intermediate compound, which may be a homogeneous haze of colloids. The
rate of production of colloid species is supposed to be proportional to the product of the
local concentration of reactants. A first-order phase separation mechanism is assumed to
take place inside the colloid-filled domain, separating them into regions of different mat-
ter densities. Such a process has the potential to generate a bunch of bands in a system
when continuous domains of identical systems are perturbed. The precipitation bands arise
by coagulation of the intermediate colloidal haze if certain critical electrolyte concentra-
tions are exceeded [32]. The spatially distributed colloidal particles are unstable against
perturbations [33]. Venzl [34] summarizes the process of Liesegang banding by three char-
acteristic stages: the production of a continuous homogeneous colloid, the coarsening of
the colloid and the dynamics of colloid particles resulting in pattern formation.

The moving boundary model [35] was suggested to deal with the problem slightly dif-
ferently. Though it supports the formation of intermediate colloidal particles, it describes
effectively the patterning process by considering a virtual migration of the boundary of the
outer and the inner electrolytes. It also envisages a phase separation mechanism for the for-
mation of the bands in the medium. The idea of formation of intermediate colloidal haze
prior to patterning along with moving boundary model proved to be efficient in predict-
ing the concentration dependence of the width of the spatio-temporal patterns. When the
Liesegang patterns were studied by computer simulation, the usual method is to solve a set
of coupled reaction–diffusion equations. We approach the task differentially by employing
the results obtained directly from the moving boundary model. Once the boundary migra-
tion concept was introduced, the theory straight away upheld all the existing laws. Thus
the moving boundary model is safer and simpler in many respects. It delineates scenery
with distinctive assumptions and boundary conditions. Thus a better understanding of the
basic facts of pattern formation and geometrical positioning of the bands is made pos-
sible with this model. The following are the basic approximations used in the moving
boundary model.

(1) The initial concentration of the outer electrolyte CA0 is assumed to be much larger
than the initial concentration CB0 of the inner electrolyte and it is also assumed that
CA(x = 0, t) is kept fixed at the junction point of the electrolytes. For experiments,
0.005 ≤ CB0/CA0 ≤ 0.1.

(2) The boundary which separates the outer and inner electrolytes (gel–solution interface)
is located at x = 0, in the y–z plane. Also the type B ions are assumed to be uniformly
distributed inside the gel medium and the initial concentrations are

CA = CA0, CB = 0; x < 0, t = 0 (8)
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and

CA = 0, CB = CB0; x > 0, t = 0. (9)

(3) As the reaction front advances into the medium in the positive x-direction, the
concentration of type A ions varies and at the position of a band

CA = CA0; 0 < x ≤ xn, t ∼ tn. (10)

This assumption holds well as the reservoir concentration CA0 of type A ions is
sufficiently large compared to the initial concentration CB0 of type B ions.

(4) The motion of the particles from one band to the other is assumed to be more or less
uniform and therefore it can be assumed that the boundary layer shifts from one band
to the next with uniform speed.

The concentration profile of type A ions in the gel is assumed to be [16]

CA(x, t) = CA0 exp {−β(x − xn(t))/ξn+1} , xn ≤ x ≤ xn+1, (11)

where β > 0, is a constant for a given system and ξn+1 is the separation between the nth
and (n + 1)th bands. For type B ions, the homogeneity of its concentration profile inside
the gel column has been disturbed by the reaction process. It can be taken as

CB(x, t)=ηCB0 exp {−γ (xn(t)−x)/ξn}+CB0(1−η′ exp{−γ (x−xn(t))/ξn+1}).
(12)

Here γ is another constant. The first term on the right side of eq. (11) represents those
components of B which have successfully penetrated the band in the negative x-direction.
Since this fraction is very small, the coefficient η will be a very small positive quantity.
The coefficient η′ appearing in the second term signifies the factor of CB0 which had been
eliminated from its initial level due to the formation of the reaction product C∗. Applying
the condition for band formation as stated in the ion product theory,

CA(x, t)CB(x, t) | xn, tn = C∗ (13)

and

∂/∂x{CA(x, t)CB(x, t)} | xn, tn = 0. (14)

Substituting the values of CA(x, t) and CB(x, t) from eqs (10) and (11) in eqs (12) and
(13), we get

(η − η′ + 1)CA0CB0 = C∗ (15)

and

η′(β/γ + 1) = β/γ + η(β/γ − ξn+1/ξn). (16)

Writing ξn+1/ξn = 1 + p and β/γ = α, one obtains

η(α − (1 + p)) + α = η′(α + 1). (17)
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Eliminating η′ from eq. (14) and by substituting in eq. (16),

p = K C∗/ηC2
B0 + KαC∗ − (1 + 2η)C2

B0/CA0(KηCB0), (18)

where K = CA0/CB0 which obviously is the Matalon–Packater law. It is now desirable to
calculate the values of the positive constants η and η′ which were mentioned earlier. For
this, substitute the value of C∗ in eq. (17) and approximate the two concentration profile
indices as the same. This will lead to

p = C2
B0α(η − η′ + 1) − (1 + 2η)/ηC2

B0 (19)

and finally to

p = (1 − 2η′)/η. (20)

If we assume the upper limit for p as 0.5, then the two constants η and η′ will become
0.05 and 0.493 respectively. On the other hand, if p assumes the lowest range, i.e., p ∼ 0
as in the case of equidistant band system, one of the constants becomes 1/2(η) and the
other ambiguous. Thus the limiting ranges of the two new constants involved in the above
calculation can be fixed. Using this value we may get a picture of the reaction mechanism.
When η′ approaches 0.493, 49.3% of CB0 had been eliminated from its initial level, due to
the formation of the reaction product (C∗). This seems to be a large value, but generally in
the precipitation band structure thick bands observed near the interface, nevertheless signi-
fies this approximation. The value of η which is small describes the intensity of penetration
of type B ions into the negative direction. Here, in the approximation, η ∼ 0.05 proposes a
very low penetration of the B ions in the backward (−x) direction.

An analysis of the width law is also possible at this juncture using the moving boundary
concept. One of the main features of the intermediate species theory is that the substance to
be precipitated is formed first as a continuous homogeneous colloidal dispersion [32,36,37].
A phase separation mechanism, the reason for which is not yet clear, occurs in the medium
which segregates, the colloidal precipitants into a band. Different techniques were proposed
to explain the phenomenon of phase separation. Droz et al analysed the phenomenon by
employing spinoidal decomposition processes [38,39] and by the action of a moving reac-
tion front. The reaction front produces colloidal particles and small clusters of particles
nucleate and aggregate behind the front. The phase separation mechanism distributes the
homogeneous colloidal particles of uniform initial concentration c0 into two parts: a band
having concentration cb and a gap having concentration cg. Applying the rules of matter
conservation we write

wncb + (ξn − wn)cg = ξnc0, (21)

where wn is the width of the nth band.
The width of the nth band as a function of the concentration is

wn = (c0 − cg)/(cb − cg)ξn, (22)

or

wn = fcξn, (23)

where

fc = (c0 − cg)/(cb − cg) (24)
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is the width coefficient, which will be more or less constant for a steady pattern. Thus
the width of the precipitation bands depends exclusively on the concentration of the
intermediate colloidal particles.

For the evaluation of the values of fc, the following approximations are useful:

(1) During the diffusion processes, type A particles will move towards the positive
x-direction and a fraction of type B particles will move towards the negative x-
direction. The remaining type B particles with concentration (1 − η)CB0, available in
the diffusion zone, are capable of initiating the reactions.

(2) The quantity of colloidal precipitants formed will be a further fraction of the available
electrolytes. Hence we proceed to assume μ(1−η)CB0 as the amount of the colloidal
particles generated.

(3) The colloidal particles which segregate on the band is yet another fraction λ(1−η)CB0

of the total colloidal particles generated.
(4) All the remaining particles will present in the gap.

Also from these assumptions, we equate the total concentration of colloidal precipitants
produced c0 and the concentration of the precipitants on the band cb as,

c0 = μ(1 − η)CB0, (25)

cb = λ(1 − η)CB0. (26)

Upon substituting these values in eq. (23) it becomes,

fc = λ/(2λ − μ). (27)

Majority of the colloidal particles appear to segregate on the bands and the void region
contains practically very few colloidal particles. When λ = 0, fc also becomes zero,
which gives the no-band condition. Between the values 0 ≤ λ ≤ 0.5, fc becomes negative
and band formation is forbidden. The width coefficient fc has an anomalous behaviour at
λ = 0.5 and it takes the value 0.5 asymptotically. We may conclude that for sustained
band formation, λ ≥ 0.5, which is somewhat a critical condition. Hence it may be safer to
approximate

fc ≈ 1/2 (28)

when μ 
 λ and λ = 1 as special case and we simulate the patterns for this case. This
gives an immediate conclusion

wn = ξn/2. (29)

The widths of the bands become half the separation distance and this is true only for small
values of n. When n becomes larger, the contribution of μ in eq. (26) becomes considerably
large and the widths of the bands become lesser than this value.

3. Experimental methods

An experiment was carried out to obtain precipitation bands. This consists of silver dichro-
mate precipitation bands in gelatin gel. The concentration of the outer (silver nitrate) and
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Figure 1. Dependence of the half-separation distance on the width of the band for the
first five bands in silver dichromate system in 12.5 wt% gelatin gel. The concentration
of the outer (silver nitrate) and the inner (potassium dichromate) electrolytes are 0.25 M
and 0.0036 M, respectively. The obtained spacing coefficient is 0.074. The size of the
experimental picture is 5.6 cm × 1.7 cm.

the inner (potassium dichromate) electrolytes are 0.25 M and 0.0036 M, respectively. Well-
defined bands were seen at regular intervals in the gel column depicting the geometric
sequence of Liesegang patterns. The width of the bands was approximately half of the
interband separation (figure 1), supporting the theoretical predictions made on the basis of
the moving boundary model.

4. Simulation

The algorithm of the program for simulation contains the following procedures:

(1) Assuming the values of p, compute the constants η and η′.
(2) Compute the position of the first band using spacing law, assuming x0 = 1.
(3) Continue the process for ten successive steps by assuming the concentration CA0 as

fixed.
(4) Compute the separation distance for each band and hence calculate the width of the

bands using eq. (29).
(5) Then plot the bands using the above steps.

On the basis of this algorithm, two-dimensional band structures were generated by a Mat-
lab programme, resembling Liesegang-type patterns. The geometry of the pattern bears all
distinguishable features of the experimentally observed structure. These two-dimensional
patterns are obtained for p = 0.077 and 0.5, respectively (figures 2 and 3). The pattern in
the figure shows fixed values for y-axis, maximum or zero. The maximum corresponds to
the initial concentration of outer diffusant (CA0). This parameter does not vary between
xn and xn + wn (shown as the shaded region) as envisaged in the moving boundary model.
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Figure 2. Computer simulated pattern for spacing coefficient p = 0.5. The con-
centrations taken on y-axis represent millimoles per litre and the distance on x-axis
is in cm.

Beyond this point the concentration of type A ions falls to zero (blank region). This repeats
periodically in space and hence the system is obtained. However, it does not mean that con-
centration of type A ions has a discontinuous regime before the precipitation zone. As p

Figure 3. Computer simulated pattern for spacing coefficient p = 0.077. The concen-
trations taken on y-axis represent millimoles per litre and the distance taken on x-axis
is in cm.
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increases, the spacing and hence the width of the bands increases. Hence different patterns
may be obtained for different concentrations of electrolytes. Plotting may also be possible
for λ values ranging from 0.5 to 1. Three-dimensional patterns can also be obtained by a
similar analysis.

5. Conclusions

The moving boundary model provides a reasonable conclusion on the spatial positioning of
the periodic band structure observed in reaction-limited diffusion systems. The theoretical
calculations based on the model suggest that the width of the precipitation bands depends
exclusively on the concentration of the intermediate colloidal particles. Also the theory
could stipulate a critical condition for sustained band formation in the reaction–diffusion
systems. This idea was sequentially developed to generate patterns in a Matlab program.
The algorithm for this was prepared entirely on the basis of moving boundary concept
and the simulated patterns bear the characteristic nature of the experimentally observed
Liesegang patterns. The intermediate colloid formation hypothesis was once again ascer-
tained in the model and it seems to be useful in illustrating many other phenomena, in
particular, the self-sustained steady patterns.
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