Parametrizációk

Allaga-Zsebeházi Gabriella zsebehazi.g@met.hu

Numerikus előrejelzés 2023-2024/I. félév

2023. 10. 26.

Bevezetés

- A hidro-termodinamikai egyenletrendszer (HTER) a légköri mozgások teljes spektrumát leírja
- A numerikus modellekben nem tudunk minden folyamatot figyelembe venni → közelítéseket alkalmazunk (véges differencia séma, spektrális módszer)
- A diszkretizált HTER megoldásával a rácstávolságnál 2-7x nagyobb skálájú folyamatokat tudjuk jól leírni (→ effektív felbontás)
- A parametrizációval a szubgrid (rácstávolságnál kisebb skálájú) folyamatokat kezeljük

A kis skálájú folyamatok hatását akkor sem hanyagolhatjuk el, ha az átlagokra vagyunk kíváncsiak

A parametrizáció lényege

- A rácstávolságnál kisebb skálájú folyamatoknak az átlagos áramlásra gyakorolt hatásukat írja le
- A parametrizálandó folyamatokat a HTER prognosztikus változóival és paraméterek segítségével fejezzük ki

A planetáris határréteg

A planetáris határréteg

- A légkör legalsó része (alsó 1-3 km), ahol a momentum-, hő- és nedvesség egyenlegben domináns szerepet játszik a turbulens vertikális áramlás
- A szállítást örvények végzik, amelyek mérete legfeljebb a határréteg vertikális kiterjedése
- A felszín hatása (pl. surlódás, hűtés, fűtés) legfeljebb egy napig érvényesül

A planetáris határréteg szerkezete nappal

Felszíni réteg (Prandtl réteg):

- a planetáris határréteg legalsó része (kb. az alsó 10%-a)
- a turbulencia inkább mechanikai mint termikus úton keletkezik és fogy (surlódás révén)

Keveredési réteg:

- a turbulencia inkább termikus úton keletkezik és fogy
- Konvekcióval örvények keletkeznek (termikek)

Turbulencia a parametrizálás indoka

Kvázi-random jelenség, determinisztikus leírása nehéz, helyette statisztikai módszereket alkalmazunk

- Létezik egy statisztikailag stabil (előrejelezhető) átlagos érték, amely körül a sebesség változik
- Egy adott helyen és időben csak meghatározott intervallumon belül tud változni a sebesség (szórás → turbulencia intenzitása, kinetikus energia mérőszáma)

Különböző méretű és frekvenciájú örvények → Navier-Stokes egyenletek dinamikailag minden mozgást leírnak, de megoldásukhoz megfelelő kezdeti- és peremfeltételekre van szükség (minden skálán előállítani nehéz és költséges).

Turbulencia energia spektrum

- A nagyobb méretű örvények felől a kisebb méretűek felé energia transzportálódik, végül molekuláris diffuzió révén disszipálódik
- Kb. 30 min 1h periódusidő között: spektrális hiány. Az energiaátadás a makroés mikroskála között nem hatékony.

Turbulencia analízise a skálák elkülönítése révén

Adott méretű örvény kinetikus energiája a teljes kinetikus energiához képest

ig. 2.2 Schematic spectrum of wind speed near the ground estimated from a study of Van der Hoven (1957).

- Pl. numerikus modellekben a modell felbontásának alsó határa
- De a mikroskálájú örvényeket is figyelembe kell venni (nagy energiát szállítanak)

Turbulencia matematikai leírás

Az **áramlást átlagos és turbulens (fluktuációk) részre bontjuk** (a spektrális hiány miatt elkülöníthetők). 3D mozgás, változást okoz az állapothatározókban is

Átlagolási szabályok

Reynolds átlagolás

 $U = \overline{U} + u'$ $V = \overline{V} + v'$ $W = \overline{W} + w'$ $\theta = \overline{\theta} + \theta'$ $q = \overline{q} + q'$ $c = \overline{c} + c'$

Variancia (turbulencia intenzitását adja meg) $\sigma_A^2 = \frac{1}{N} \sum_{i=0}^{N-1} \left((\bar{A} + a')_i - \overline{\bar{A} + a'} \right) = \overline{a'^2}$

Kovariancia (két változó közötti kapcsolat fokát adja meg)

$$cov(A,B) = \frac{1}{N} \sum_{i=1}^{N-1} (A_i - \bar{A}) (B_i - \bar{B}) = \bar{a'b'}$$

$$A = \overline{A} + a'$$

$$B = \overline{B} + b'$$

$$\overline{a'} = 0$$

$$(\overline{B} a') = 0$$

$$(\overline{AB}) = \overline{A}\overline{B} + \overline{a'b'}$$

nemlineáris tag
(ugyanígy: $\overline{a'^2}$, $\overline{a'b'^2}$, $\overline{a'^2b'^2}$)

A kormányzó egyenletek turbulens közegben

 $\frac{d\bar{u}}{dt} = \frac{\partial\bar{u}}{\partial t} + \bar{u}\frac{\partial\bar{u}}{\partial x} + \bar{v}\frac{\partial\bar{u}}{\partial y} + \bar{w}\frac{\partial\bar{u}}{\partial z} = -\frac{1}{\bar{\rho}}\frac{\partial\bar{p}}{\partial x} + f\bar{v} - l\bar{w} - \frac{1}{\bar{\rho}}\left[\frac{\partial(\bar{\rho}u'u')}{\partial x} + \frac{\partial(\bar{\rho}u'v')}{\partial y} + \frac{\partial(\bar{\rho}u'w')}{\partial z}\right] + F_{sx}$ $\frac{d\bar{v}}{dt} = \frac{\partial\bar{v}}{\partial t} + \bar{u}\frac{\partial\bar{v}}{\partial x} + \bar{v}\frac{\partial\bar{v}}{\partial v} + \bar{w}\frac{\partial\bar{v}}{\partial z} = -\frac{1}{\bar{\rho}}\frac{\partial\bar{p}}{\partial v} - f\bar{u} - \frac{1}{\bar{\rho}}\left[\frac{\partial(\bar{\rho}\overline{v'u'})}{\partial x} + \frac{\partial(\bar{\rho}\overline{v'v'})}{\partial v} + \frac{\partial(\bar{\rho}\overline{v'v'})}{\partial z}\right] + F_{sy}$ $\frac{d\bar{w}}{dt} = \frac{\partial\bar{w}}{\partial t} + \bar{u}\frac{\partial\bar{w}}{\partial x} + \bar{v}\frac{\partial\bar{w}}{\partial y} + \bar{w}\frac{\partial\bar{w}}{\partial z} = -\frac{1}{\bar{\rho}}\frac{\partial\bar{p}}{\partial z} - g + l\bar{u} - \frac{1}{\bar{\rho}}\left[\frac{\partial(\bar{\rho}w'u')}{\partial x} + \frac{\partial(\bar{\rho}w'v')}{\partial y} + \frac{\partial(\bar{\rho}w'w')}{\partial z}\right] + F_{sy}$ $\frac{\partial \bar{\rho}}{\partial t} = -\left|\frac{\partial \bar{\rho}\bar{u}}{\partial x} + \frac{\partial \bar{\rho}\bar{v}}{\partial y} + \frac{\partial \bar{\rho}\bar{w}}{\partial z}\right| = -\left|\frac{\partial \bar{\rho}\bar{u}}{\partial x} + \frac{\partial \bar{\rho}\bar{v}}{\partial y} + \frac{\partial \bar{\rho}\bar{w}}{\partial z}\right|$ $\frac{d\theta}{dt} = \frac{\partial\theta}{\partial t} + \bar{u}\frac{\partial\theta}{\partial x} + \bar{v}\frac{\partial\theta}{\partial y} + \bar{w}\frac{\partial\theta}{\partial z} = -\frac{1}{\bar{\rho}}\left[\frac{\partial(\bar{\rho}\theta'u')}{\partial x} + \frac{\partial(\bar{\rho}\theta'v')}{\partial y} + \frac{\partial(\bar{\rho}\theta'w')}{\partial z}\right] + \frac{\theta}{\bar{T}}\left[-\bar{F} + \bar{D}_T + \frac{1}{\bar{c}_{nm}}\bar{Q}_R\right]$ $\frac{d\bar{q}}{dt} = \frac{\partial\bar{q}}{\partial t} + \bar{u}\frac{\partial\bar{q}}{\partial x} + \bar{v}\frac{\partial\bar{q}}{\partial y} + \bar{w}\frac{\partial q}{\partial z} = -\frac{1}{\bar{o}}\left[\frac{\partial(\bar{\rho}q'v')}{\partial x} + \frac{\partial(\bar{\rho}q'v')}{\partial y} + \frac{\partial(\bar{\rho}q'w')}{\partial z}\right] + \frac{1}{\bar{o}}\overline{S_w} + \frac{1}{\bar{o}}\overline{S_i}$ $\bar{p}\bar{\alpha} = \bar{R}\bar{T}$

dı

A kormányzó egyenletek turbulens közegben

 $\frac{d\bar{u}}{dt} = \frac{\partial\bar{u}}{\partial t} + \bar{u}\frac{\partial\bar{u}}{\partial x} + \bar{v}\frac{\partial\bar{u}}{\partial y} + \bar{w}\frac{\partial\bar{u}}{\partial z} = -\frac{1}{\bar{\rho}}\frac{\partial\bar{p}}{\partial x} + f\bar{v} - l\bar{w} - \frac{1}{\bar{\rho}}\left[\frac{\partial(\bar{\rho}u'u')}{\partial x} + \frac{\partial(\bar{\rho}u'v')}{\partial y} + \frac{\partial(\bar{\rho}u'w')}{\partial z}\right] + F_{sx}$ $\frac{d\bar{v}}{di}$

Lezárási probléma:

A turbulens fluxusok új ismeretlenek a HTER-ben, mellyel az ismeretlenek száma meghaladja az egyenletek számát. Az ismeretlenek megoldásához újabb prognosztikus egyenleteket kell bevezetni, de ezzel új ismeretlenek keletkeznek \rightarrow a turbulencia teljes statisztikai leírásához végtelen számú egyenlet kell, véges számú egyenletek esetén a turbulencia lezáratlan \rightarrow lezárási probléma. Az egyenleteket le kell zárni

$$\frac{d\bar{q}}{dt} = \frac{\partial\bar{q}}{\partial t} + \bar{u}\frac{\partial\bar{q}}{\partial x} + \bar{v}\frac{\partial\bar{q}}{\partial y} + \bar{w}\frac{\partial q}{\partial z} = -\frac{1}{\bar{\rho}}\left[\frac{\partial(\bar{\rho}\overline{q'u'})}{\partial x} + \frac{\partial(\bar{\rho}\overline{q'v'})}{\partial y} + \frac{\partial(\bar{\rho}\overline{q'w'})}{\partial z}\right] + \frac{1}{\bar{\rho}}\overline{S_w} + \frac{1}{\bar{\rho}}\overline{S_i}$$
$$\bar{p}\bar{\alpha} = \bar{R}\bar{T}$$

A turbulencia lezárása 1.

- Módszer: véges számú egyenleteket használunk, a fennmaradó ismeretleneket pedig diagnosztikus összefüggések felírásával közelítjük
- Lezárás foka: a legmagasabb rendű prognosztikus egyenlet amelyet még megtartunk

• 1,5-es rendű lezárás: prognosztikai egyenlet a turbulens kinetikus energiára, a többi másodrendű momentumot parametrizáljuk

Turbulencia A turbulencia lezárása 2.

• 1,5-es rendű lezárás: prognosztikai egyenlet a turbulens kinetikus energiára, a többi másodrendű momentumot parametrizáljuk

TKE:
$$b^2 = \frac{1}{2} \left[\overline{u'u'} + \overline{v'v'} + \overline{w'w'} \right]$$

$$\frac{\partial b^{2}}{\partial t} = -\overline{u'w'}\frac{\partial \overline{u}}{\partial z} - \overline{v'w'}\frac{\partial \overline{v}}{\partial z} + \frac{g}{\overline{\Theta}}\overline{w'\Theta'} - \frac{\partial}{\partial z}\left[\frac{\overline{w'(u'u'+v'v'+w'w')}}{2}\right] - \frac{\partial}{\partial z}\left[\frac{\overline{p'w'}}{\overline{\rho}}\right] - \varepsilon$$

$$I. \qquad II. \qquad III. \qquad III. \qquad IV. \qquad V.$$

- I. Szélnyírás vagy turbulens impulzus áram hatása
- II. Felhajtóerő hatása
- III. TKE turbulens transzportja (harmadrendű momentumok)
- IV. Nyomási fluktuációk hatása
- V. TKE disszipációja

Turbulencia Lokális és nemlokális lezárás

Lokális lezárás: valamely rácspontban az ismeretlen mennyiséget ugyanabban a rácspontban ismert változók, valamint azok deriváltjai segítségével fejezzük ki Nemlokális lezárás: valamely rácspontban az ismeretlen mennyiséget vertikális értelemben jóval távolabbi rácsponti változók felhasználásával fejezzük ki.

Turbulencia Példa elsőrendű, lokális lezárásra [K-elmélet]

Példa elsőrendű, lokális lezárásra [K-elmélet]

A K jellemzői:

- **neve:** örvényes viszkozitás, örvényes diffuzivitás, turbulens átviteli együttható, ...
- Nagyobb méretű örvények jelenlétében nem működik
 → stabil esetben működik
- K-t az áramlás függvényében parametrizálni kell (stabilitás mértékétől függ)

 $Richardson \ szám = \frac{felhajtóerő \ keltette \ TKE}{mechanikai \ úton \ keletkező \ TKE}$

Példa elsőrendű lezárásra [K-elmélet]

A K jellemzői:

- **neve:** örvényes viszkozitás, örvényes diffuzivitás, turbulens átviteli együttható, ...
- Nagyobb méretű örvények jelenlétében nem működik
 → stabil esetben működik

A planetáris határréteg magassága parametrizálása

Richardson szám alapján (pl. az ALADIN-Climate modellben):

$$R_{i} = \frac{g}{\overline{\theta_{v}}} \frac{\Delta \overline{\theta_{v}} \Delta z}{(\Delta \overline{u})^{2} + (\Delta \overline{v})^{2}} \cong R_{\text{crit}}[0,25 - 0,5]$$

A modellben a Ri számot kiszámítjuk az egyes modellszintek és a felszín között. Ha a j és a (j-1) szintre teljesül, hogy

R_i(j) < R_{crit} és R_i (j-1) > R_{crit} → A két modellszint magasságának lineáris interpolációjával megkapjuk a határréteg magasságot.

A keveredési rétegről most áttérünk a felszíni rétegre

Felszíni réteg (Prandtl réteg):

- a planetáris határréteg legalsó része (kb. az alsó 10%-a)
- a turbulencia inkább mechanikai mint termikus úton keletkezik és fogy (surlódás révén)
- a turbulens fluxusok állandóak

A vertikális gradiensek meghatározása Monin-Obukhov féle hasonlósági elmélet neutrális esetben

- A felszíni rétegben (konstans fluxus réteg) kis örvények szállítanak. Mechanizmus: súrlódás keltette mechanikai turbulencia főként
- Valamely változó (u, θ , q) vertikális gradiense kifejezhető felszín feletti magasság és a felszíni fluxusok ismeretében
- Neutrális esetben a szél közel logaritmikusan változik a magassággal

u_{*}: surlódási sebesség

$$\frac{d\overline{u}}{dz} = \frac{u_*}{kz} \qquad u_* = \sqrt{\overline{u'w'_s^2} + \overline{v'w'_s^2}}$$

$$\bar{u}(z) = \left(\frac{u_*}{k}\right) ln\left(\frac{z}{z_0}\right)$$
 z_0 : érdességi hossz paraméter.

Ez alapján megadható pl. a 10 m-es szélsebesség (hasonlóan megadható a hőmérsékleti profil is, amiből számítható pl. a 2 m-es hőmérséklet) A vertikális gradiensek meghatározása Monin-Obukhov-féle hasonlósági elmélet általános alakja

- Cél: a neutrális esetre meghatározott összefüggéseket kiterjesztjük, figyelembe véve a rétegződést (stabilitást)
- Monin-Obukhov: a felszíni rétegben a turbulencia által szállított mennyiség (u, θ, q) vertikális gradiense a felszíni momentum fluxustól, a felhajtóerőtől és z magasságtól függ
- $\zeta = z/L$ stabilitási paraméter (dimenziótlan), ahol

 $L = -\frac{u_*^3}{k_{Toc}^{g_H}}$ Monin-Obukhov hossz L>0 : stabil rétegződés L <0 : instabil rétegződés

 $\frac{du}{dz} = \frac{u_*}{kz} \Phi_m(\zeta)$

 $\frac{d\theta}{dz} = \frac{\theta_*}{kz} \Phi_H(\zeta)$ $\Phi(\zeta)$: stabilitási függvény A vertikális gradiensek meghatározása Monin-Obukhov-féle hasonlósági elmélet általános alakja

- Cél: a neutrális esetre meghatároz figyelembe véve a rétegződést (sta
- Monin-Obukhov: a felszíni rétegbe (u, θ, q) vertikális gradiense a felsz z magasságtól függ

$$\zeta = z/L$$
 stabilitási paraméter (dime
 $L = -\frac{u_*^3}{k_T^{\frac{g}{H}}}$
Monin-Obukhov hc
L>0 : stabil rétegzőc

L <0 : instabil réteg:

$$d\overline{u} \quad u_* \quad z \quad z$$

$$\frac{du}{dz} = \frac{u_*}{kz} \Phi_m(\zeta)$$

 $\frac{d\overline{\theta}}{dz} = \frac{\theta_*}{kz} \Phi_H(\zeta)$ $\Phi(\zeta): \text{ stabilitási függvény}$

Felszín-légkör kölcsönhatás

29

Felszín-légkör kölcsönhatás Felszíni modell feladatai

 a felszín és a légkör, valamint a felszín és a talaj közötti fizikai folyamatok leírása (az óceán és jégfelszín folyamataiért nem felelős)

• lezárja a felszíni energia- és vízegyenleget

 alsó határfeltételeket biztosít az időjárás előrejelző és klímamodelleknek

Felszín-légkör kölcsönhatás *Felszíni modell feladatai 1.*

a felszín és a légkör, valamint a felszín és a talaj közötti fizikai folyamatok leírása

Noah felszíni modell

Felszín-légkör kölcsönhatás *Felszíni modell feladatai 2.*

Alsó határfeltételeket biztosít az időjárás előrejelző és klímamodelleknek

- Szenzibilis hőáram
- Látens hőáram
- Felfelé irányuló hosszúhullámú sugárzás (T_{skin}, emisszivitás)
- Felfelé irányuló rövidhullámú sugárzás (albedo)
- Momentum-transzport

Cserébe a légköri modell felső kényszereket biztosít a felszíni modell számára

• SW \downarrow , LW \downarrow , T, p, q, u, v, P

Felszín-légkör kölcsönhatás *Felszíni modell feladatai 3.*

Felszíni energiaegyenleg Felszíni vízegyenleg н LE E Precipitation **Net** radiation Sensible heat flux Evapotranspirati Latent heat flux Ground heat flux Surface runoff Ru. P Subsurface runoff Russ G $\frac{1}{\partial t} = P - ET - RO - D$ дθ $R_n = H + LE + G$

lezárja a felszíni energia- és vízegyenleget

 $R_n = SW_{net} + LW_{net}$ $R_n = (1-\alpha)R_g + (R_a - \varepsilon \sigma T_s^4)$ $\overline{\partial t} = P$ Θ : térfogati talajnedvességtartalom P: csapadék ET: evapotranszspiráció

RO: felszíni lefolyás D: felszíni beszivárgás

Felszín-légkör kölcsönhatás Transzport-folyamatok a felszínről a mélyebb rétegek felé. Hő terjedése a talajban

Vertikális hőtranszport a talajban

- Jellemzően kondukció által (molekuláris diffúzió)
- Gradiens lefele irányul (negatív előjel)

A hővezetés egyenlete (Fourier-törvény)

$$G_d = -\lambda_d \frac{\partial T_d}{\partial z}$$

 λ_d : Hővezető képesség [Wm⁻¹K⁻¹]: függ a talaj összetételétől (talajnedvesség, talajtípus, porozitás)

A hővezetés differenciálegyenlete

 $\frac{\partial G_d}{\partial z} = C_d \frac{\partial T_d}{\partial t} \quad \begin{array}{l} \mathbf{C_d:} \text{ hőkapacitás} \\ \text{[Jm}^{-3}\text{K}^{-1}\text{]: függ a talaj} \end{array}$ összetételétől

 $\frac{\partial T_d}{\partial t} = \frac{\lambda_d}{C_s} \frac{\partial^2 T_d}{\partial z^2} = K_d \frac{\partial^2 T_d}{\partial z^2}$ vezetőképesség

K_d: hőmérséklet- $[m^2s^{-1}]$

Ζ

Felszín-légkör kölcsönhatás A Hővezetés parametrizálása a force-restore módszerrel

$$\frac{\partial T_s}{\partial t} = C_T G - \frac{2\pi}{\tau} (T_s - T_2)$$

"force" "restore"

$$\frac{\partial T_2}{\partial t} = \frac{1}{\tau} (T_s - T_2)$$

τ: relaxációs idő (1 nap) T₂: átlagos talajhőmérséklet

$$G = R_n - H - LE$$

$$C_T = \frac{1}{\left(\frac{1 - veg}{C_G} + \frac{veg}{C_V}\right)} \qquad \text{Ir}$$

$$C_G = 2\left(\frac{\pi}{\lambda c_g \tau}\right)^{1/2} \qquad C_V = 10^{-1}$$

nercia-együttható

$$C_V = 10^{-3} K m^2 J^{-1}$$

függ a talaj fizikai tulajdonságaitól

35

Felszín-légkör kölcsönhatás Transzport-folyamatok a felszínről a mélyebb rétegek felé. Víz terjedése a talajban

Talajnedvesség kifejezhető:

- talajnedvesség-tartalom (Θ): aktuális víztartalom a talaj teljes térfogatához viszonyítva. Vízmérleg vizsgálatakor használjuk.
- Talajnedvességpotenciál (ψ): a vízkivételhez szükséges energia [mértékegység: Pa, m vízoszlop magasság]. Vízmozgás vizsgálatakor illetve a növények számára rendelkezésre álló vízmennyiség meghatározásakor használjuk.

Figure 2.7 Relationship between soil moisture potential (Ψ) and soil moisture content (S) in soils with different textures. Heavy horizontal bars show the volumetric water available to plants (modified after Buckman and Brady. 1960).

$$f_w = f_{wk} + f_{wg}$$
 Kapilláris + gravitációs erő
 $f_{wk} = -K_f \frac{\partial \psi}{\partial z}$ Darcy törvénye
 f_w : talajnedvesség vertikális árama (m/s)
 K_f : talaj vízvezető képessége (m/s). Telítetlen
állapotban függ a talajnedvességtartalomtól,
talajnedvességpotenciáltól és a talaj tulajdonságaitól.

Értéke nagy, ha a talaj nedves és porózus

Felszín-légkör kölcsönhatás Transzport-folyamatok a felszínről a mélyebb rétegek felé. Víz terjedése a talajban

 $f_w = f_{wk} + f_{wg}$ Kapilláris + gravitációs erő $f_{wk} = -K_f \frac{\partial \psi}{\partial z}$ Darcy törvénye A talajvízmozgás differenciálegyenlete $-\frac{\partial f_w}{\partial z} = \rho_w \frac{\partial \theta}{\partial t}$ $\rho_{w} \frac{\partial \theta}{\partial t} = -\frac{\partial}{\partial z} \left[-K \frac{\partial \psi}{\partial \theta} \frac{\partial \theta}{\partial z} + K \right] = \frac{\partial}{\partial z} \left[D_{w} \frac{\partial \theta}{\partial z} \right] - \frac{\partial K}{\partial z}$ $D_{w} = \frac{K}{\frac{\partial \theta}{\partial \theta}} = \frac{K}{C}$ C: talaj specifikus vízkapacitása D...: talajvíz diffúziós együtthato D_w: talajvíz diffúziós együtthatója (felületi feszültséggel kapcsolatos)7 ∂w

Felszín-légkör kölcsönhatás A vízvezetés parametrizálása a force-restore módszerrel

$$\frac{\partial w_g}{\partial t} = \frac{C_1}{\rho_w d_1} (P_g - E_g) - \frac{C_2}{\tau} (w_g - w_{g_{eq}}) \quad 0 \le w_g \le w_{sat}$$

$$\frac{\partial w_2}{\partial t} = \frac{1}{\rho_w d_2} (P_g - E_g - E_{tr}) \quad 0 \le w_2 \le w_{sat}$$

$$P_g: \text{felszínt elérő}$$

$$csapadék$$

$$E_g: \text{felszíni párolgás}$$

$$E_{tr}: \text{transzspiráció}$$

$$d_1: 10 \text{ cm}$$

$$d_2: \text{talaj mélysége}$$

$$w_{geq}: \text{egyensúlyi felszíni talajnedvességtartalom}$$

$$(azaz F_g = F_k)$$

$$Q_r + \frac{P_r}{P_s}$$

$$W_s + \frac{P_r}{P_s}$$

$$Q_r + \frac{P_r}{P_s}$$

$$W_s + \frac{P_r}{P_s}$$

Felszín-légkör kölcsönhatás A SURFEX felszíni modell

Rendkívül heterogén földfelszín

Eltérő fizikai folyamatok a növényzetre, tóra, városra (egy rácscellába több felszíntípus eshet)

Megoldás: "tiling" módszer

Fluxusok számítása külön-külön az egyes felszíntípusokra, majd átlagolásuk területarányosan

Felszín-légkör kölcsönhatás A SURFEX felszíni modell működése

A SURFEX felszíni modell *Városi séma (TEB)*

- Városi felszín közelítése "utcakanyonokkal" minden útirány lehetséges (Geometriai paraméterek: épületmagasság, tető/út, fal/út)
- Prognosztikus egyenlet a tetőre, falra, útra (energia- és nedvesség egyenleg)
- Felszín 3 részre osztott → hővezetés leírása
- Sugárzás:
 - Árnyékolás
 - Rövid hullámú sugárzás visszaverődése
 - Hosszúhullámú sugárzás csapdázódása
- Ipar, közlekedés hő- és nedvességkibocsátása
- Csapadék:
 - Áthatolhatatlan felszínek
 - De figyelembe veszi a víz elvezetését a csatornákba
- 1 rétegű hóséma
 - Albedo prognosztikus változó

A SURFEX felszíni modell tenger felett – több lehetőség

- rövid távú célokra (néhány nap) \rightarrow konstans SST
- Hosszabb modell futtatásokhoz, vagy ha tenger feletti határréteg és tengerfelszín között erős kapcsolat van (pl. hurrikánok idején) : 1-D óceáni modell
- Éghajlati modellszimulációkhoz: 3D óceáni modell kell külön modell komponens

A SURFEX felszíni modell *Tó felett – több lehetőség*

- Turbulens fluxusok parametrizációja konstanst felszíni hőmérséklet mellett
- 1-d tóséma : FLAKE
 - Termoklin zóna: előre definiált hőmérséklet profil
 - Hasonlóan: tó alatti aktív felszíni réteg illetve a hóra és jégre (opcionális)
 - Kis tavak esetén fontos a felszínhőmérséklet napi menetének leírása
 - Fontos külső paraméter: tómélység (max. 60 m – sekély tómodell)

Technikai megvalósítás a modellekben 1.

A dinamikai és parametrizációs számítások elkülönítve történnek a modellekben

- 1. A prognosztikus változók számítása HTER megoldása (dinamika)
- 2. A parametrizálandó folyamatok prognosztikus változókra tett statisztikai hatásainak (tendenciák) számítása (**fizika**)
- 2-féle módszer:
- Szekvenciális: a folyamatokat fizikai megfontolások alapján rangsoroljuk, s a parametrizációs sémák megoldását sorban egymás után végezzük el, úgy hogy az egyes lépésekben felhasználjuk a korábbi számítások eredményeit
- Parallel: a parametrizálandó folyamatokat párhuzamosan számítjuk ki, majd eredményüket a parametrizációs ciklus végén összegezzük. A számítások nem teljesen függetlenek egymástól, bizonyos sémák felhasználják más sémák által számított mennyiségeket.

Technikai megvalósítás a modellekben 2.

A **parametrizációs sémák megoldása** a modellezésben nagy számításigényű (**költséges**) eljárás, ezért a különösen költséges sémák nem minden időlépésben és nem minden rácspontban kerülnek kiszámításra

Bizonyos folyamatok pontos **meghatározásához** az alkalmazott **integrálási időlépcső túl nagy** (pl. csapadékképződésben a csapadékelemek esése) → a megoldáshoz során köztes időlépcsőket vezetnek be

Parametrizációs csomagok: a modellekbe a fizikai parametrizációs sémák gondosan összeválogatott csoportja kerül beépítésre (szempontok: kitűzött feladat, hatékonyság)

Irodalom

Parametrizációról általában:

 Tiedtke, M., 1984: The general problem of parameterization. ECMWF Parameterization Training, 2002. <u>https://www.ecmwf.int/sites/default/files/elibrary/2002/16929-general-</u>

problem-parametrization.pdf

Turbulencia:

• Stull, R. B., 1988: An introduction to boundary layer meteorology. Dordrecht: Kluwer Academic Publishers.

Felszín-légkör kölcsönhatás:

- Noilhan, J. and Mahfouf, J.-F., 1996: The ISBA land surface parameterization scheme. *Global and Planetary change*, **13**, 145–159. <u>https://pdfs.semanticscholar.org/781f/db1a1b16f9c0d36dba203f0212728dc7e7</u> <u>cb.pdf</u>
- Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., Voldoire, A., 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geoscientific Model Development, 929-960. 6. https://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdf 46