subject |
Mathematics 4
|
lecturers |
Dr. Faragó István, professor |
credits |
2+2=4 |
period |
4 |
curriculum |
Riemann integral of multi-variable functions. Complex functions: continuity, differentiability (Cauchy-Riemann equations). Line
integral of complex functions. Cauchy theorem, Goursat lemma. Cauchy-type integral. Primitive functions, Newton-Leibniz formula. Residuum. Cauchy integral formula. Regular functions and their properties. Harmonic functions. Taylor series. Sequences
of functions, pointwise
and uniform convergence. Properties
of the limit function (continuity, differentiability, integrability). Series of functions,
pointwise and uniform convergence.
|
literature |
I.Mezei,
I Faragó, P. Simon, Á. Havasi: Introductory Course
in Analysis, 2013. M. Mincsovics,
Á. Havasi, T. Haszpra: Matematikai
példatár földtudományi szakosoknak, 2013. |
form
of tuition |
lectures, practical exercises |
mode
of assessment |
Written exam, reporting |