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Introduction 
 

Decrease of air temperature along with high specific humidity 2–3 hours before the fog onset 

is important factor in fog formation and evolution. Fog development is an interaction among 

the radiative cooling leading to saturation from the ground to the top of fog layer, and turbulent 

diffusion of water vapor causing dew formation (Duynkerke, 1999). The moisture deposited on 

the surface results in release of latent heat causing further cooling near the surface. The 

magnitude of cooling rate is a key factor for aerosol activation process and influences the drop 

number concentration and their size distribution (Rangognio et al., 2009; Haeffelin et al., 2010). 

Weak turbulent mixing promotes the fog formation. After the increase of shortwave radiation 

and/or wind speed, dissipation of fog can happen within from few minutes to hours. Several 

experiments have been conducted in the past to study the physical processes determine the fog 

formation, and most of these experiments focused on the impact of radiative cooling. The 

earliest papers published results about the radiative flux divergence near the surface (by Rider 

& Robinson, 1951; Funk, 1960; and Elliot, 1964). These studies asserted that the cooling rate 

near the surface is about 1 K hr–1 (or 1 C hr–1). Mason (1982) summarized the physical 

processes affecting the lifecycle of the fog. He concluded that outgoing long wave radiation 

from the surface results in radiative cooling of about 1 C hr–1. Duynkerke (1999) evaluated the 

cooling rate, and found that it was about 3.5 K hr–1 at 1 m above the ground, and it was about 
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0.2–0.5 C hr–1 above the boundary layer. He asserted that cooling rate near to the surface was 

balanced by heating due to turbulence and inside the boundary layer, turbulence was dominant 

factor causing cooling. 

Cooling rate has its maximum at the top of fog, and thus maximum amount of liquid water 

was condensed there (Rangognio et al., 2009). Rangognio et al. (2009) also found that the 

number concentration of activated aerosol particles depends on the cooling rates, and thus its 

value was different closed to the ground than at the top of fog. The authors observed a cooling 

rate of 4 C hr–1 near the surface, while cooling rates varied between 4 C hr–1 and 15 C hr–1 

at the top of fog. Price (2011) asserted that the cooling rates during a radiation fog event varied 

between 1 and 4 C hr–1 three hours before the onset of fog and one hour into fog. Haeffelin et 

al. (2013) assessed that the cooling rate greater than 1 C hr–1 mitigated the fog formation, and 

rather promoted dew formation on the surface. Therefore, evaluation of a threshold value for 

cooling rate is essential because if the cooling rate is too large, the fog will dissipate efficiently 

due to the fast sedimentation of the droplets (Haeffelin et al., 2013; Dupont et al., 2016). 

A micrometeorological fog experiment was performed at the main observatory of the 

Hungarian Meteorological Service (HMS) in Budapest (station ID 12843) from October to 

April 2020–21. This field campaign was designed to include simultaneous measurements of 

standard meteorological variables, radiative balance, vertical profiles of wind, temperature and 

humidity up to a height of 30 m. Furthermore, turbulent momentum, sensible and latent heat 

fluxes were evaluated, and concentration of the pollutants, both gases and aerosol particles were 

observed to study the environmental conditions under which fog develops, persists and 

dissipates (Weidinger et al., 2021). The main objective of the experiment is to construct a 

comprehensive database to study the characteristics and variability of fog events in order to 

improve our understanding of physiochemical, dynamical and other environmental factors, 

which influence the fog lifecycle. 

In this study the time series of temperature with time resolution of 10 s and 10 Hz, before 

the onset of a fog, was studied. It has been utilized to find the breakpoints in the time series, 

and then perform linear regression analysis to calculate the cooling rate for the corresponding 

time periods. 

 

Budapest Field Campaign 

 

The experiment was performed during the winter half-year of 2020–21 (from 1st October to 31st 

March). Surface energy budget measurements started in the middle of November, and the 

measurements on a 30-m tower (temperature, relative humidity and wind speed profiles and 

Gill Sonic anemometer measurement at 30 m height) began at the end of December. The 

measuring site was the main observatory of the HMS located at 47.4292 N° and 19.1818 E° in 

Pestszentlőrinc, Budapest (station ID 12843) (Weidinger et al., 2021). 

The main elements of the instrumentation implemented on the 30-m tower (Figure 1) are as 

follows: (i) Vaisala HMP-45C (temperature/relative humidity sensors) and Vaisala WA15 

anemometer (wind speed detection) were installed at the heights of 9 m and 23 m. (ii) Gill sonic 

Windmaster 3D anemometer placed on top of the tower at the height of 30 m. The instruments 

installed on the tower are also listed in Table 1. Figure 1 shows the picture of 30 m tower with 

instrumentations used to observed data to reconstruct the vertical profiles of the different 

physical variables. Eddy covariance system, installed at 5 m on small towers in about a distance 

of 20 m from the 30-m tower, was used to provide the components of the energy budget 

(Weidinger et al., 2021). 

In this study the data about temperature observed at heights at 9 m, 23 m, and sonic 

temperature observed by Gill Sonic Anemometer are analyzed for better understanding the 

cooling rate impacts on the onset of foggy events. 
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Figure 1: 30-m meteorological tower for temperature and wind profile measurements along with eddy 

covariance measurements done at the top (30 m) using Gill sonic Windmaster 3D anemometer. 
 

Table 1: Instrumentation of the 30-m meteorological tower. 

Instrument Height Variables Resolution 

Gill sonic Windmaster  

3D anemometer 

30 m 𝑢, 𝑣, 𝑤 [m s−1], 𝑇𝑠  [℃], 
turbulent fluxes (momentum 

and sensible heat): 
𝜏 [kg m−1s−2], 𝐻 [W m−2]   

10 Hz 

Vaisala HMP-45C 23 m  𝑇 [℃], 𝑅ℎ [%] 10 s  

Vaisala WA15 anemometer 23 m wind speed (𝑉 [m s−1] ) 10 s 

Vaisala HMP-45C 9 m  𝑇 [℃], 𝑅ℎ [%] 10 s 

Vaisala WA15 anemometer 9 m  wind speed (𝑉 [m s−1] ) 10 s 

 

Relationship between cooling rate and fog formation 

 

The cooling of the surface layer along with high relative humidity are an important precursor 

to the formation of fog. The surface layer should cool down to allow the condensation of vapor 

on water soluble aerosol particles. 

In this study the cooling rate (
𝛛𝑻

𝛛𝒕
) detected prior to the foggy event occurred on 24th 

November (03:30 – 22:30 UTC) in 2020 is analysed. This radiation type fog (based on the 

methodology of Tardif & Rasmussen (2007) and Lin et al. (2022)) formed due to radiative 

cooling of the ground. The knowledge of cooling rate is important for accurate evaluation of 

the rate of saturation. 
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A couple of hours before the onset of fog the change of saturation vapor pressure (𝒆𝒔) with 

respect to temperature (𝑻) is used for the calculation of rate of change of supersaturation (𝒔). 

The supersaturation is the ratio of vapor pressure (𝒆𝒂), which depends on the vapor content and 

saturation vapor pressure (𝒆𝒔(𝑻)). The partial time derivative of supersaturation  

(𝒔 = (
𝒆𝒂

𝒆𝒔
) > 𝟏) can be given as follows: 

𝛛𝒔

𝛛𝒕
=

𝝏(𝒆𝒂 𝒆𝒔)⁄

𝛛𝒕
=

𝟏

𝐞𝒔

𝛛𝐞𝒂

𝛛𝒕
−

𝐞𝒂

𝒆𝒔
𝟐

𝛛𝐞𝒔

𝛛𝒕
=

𝟏

𝐞𝒔

𝛛𝐞𝒂

𝛛𝒕
−

𝐞𝒂

𝒆𝒔
𝟐

𝛛𝐞𝒔

𝛛𝑻

𝛛𝑻

𝛛𝒕
.                               (1) 

Using the Clausius–Clapeyron-equation (Götz & Rákóczi, 1981) (
𝛛𝐞𝒔

𝛛𝑻
≅

𝐝𝐞𝒔

𝐝𝑻
=

𝑳𝒍𝒗𝒆𝒔

𝑹𝒗𝑻𝟐) we get  

𝛛𝒔

𝛛𝒕
=

𝟏

𝐞𝒔

𝛛𝐞𝒂

𝛛𝒕
−

𝐞𝒂

𝒆𝒔
𝟐

𝑳𝒍𝒗𝒆𝒔

𝑹𝒗𝑻𝟐

𝛛𝑻

𝛛𝒕
                                                       (2) 

where the 𝑳𝒍𝒗 is the latent heat of vaporization for water (𝑳𝒍𝒗 ≅ 𝟐. 𝟓 ∙ 𝟏𝟎𝟔 𝐉 𝐤𝐠−𝟏, 𝑹𝒗 is the 

specific gas constant for the water vapour (𝑹𝒗 = 𝟒𝟔𝟏 𝐉 𝐤𝐠−𝟏 𝐊−𝟏). Because the saturation 

vapor pressure (𝒆𝒔) is a function of only the single independent variable T, the partial and total 

derivatives are equivalent in this case (Lawrence, 2005).  

Eq. (2) can also be written with specific humidity, 

𝛛𝒔

𝛛𝒕
=

𝝏(𝒒𝒂 𝒒𝒔)⁄

𝛛𝒕
=

𝟏

𝒒𝒔

𝛛𝒒𝒂

𝛛𝒕
−

𝒒𝒂

𝒒𝒔
𝟐

𝑳𝒍𝒗𝒒𝒔

𝑹𝒗𝑻𝟐

𝛛𝑻

𝛛𝒕
,                                             (3) 

where 𝒒𝒂 =
𝝆𝒂

𝝆𝒎
, 𝒒𝒔 =

𝝆𝒔

𝝆𝒎
 is the supersaturated and saturated specific humidity, and 𝝆𝒂, 𝝆𝒔, 𝝆𝒎 

is the density of supersaturated and saturated water vapor, and the moist air, respectively. We 

assume that 𝝆𝒎 = 𝒄𝒐𝒏𝒔𝒕. 

The local temporal derivate of temperature (
𝛛𝑻

𝛛𝒕
) is divided into two parts as advection and 

non-advection parts. 

𝛛𝑻

𝛛𝒕
=

𝛛𝑻

𝛛𝒕
|

𝒂𝒅𝒗.
+

𝛛𝑻

𝛛𝒕
|

𝒏𝒐𝒏𝒂𝒅𝒗.
.                                             (4) 

The advection depends on the horizontal temperature gradient (𝛁𝒉𝑻) and the wind speed 

(𝐯𝒉): 

𝛛𝑻

𝛛𝒕
|

𝒂𝒅𝒗.
= −𝐯𝒉 ∙ 𝛁𝒉𝑻.                                                     (5) 

The non-advection term consists of the convection, −𝐰
𝝏𝑻

𝝏𝒛
, and the nonadiabatic processes 

as the condensation, −
𝑳𝒍𝒗

𝒄𝒑𝒎

𝐝𝒒𝒂

𝐝𝒕
, where 𝒄𝒑𝒎 is the heat capacity of the moist air with constant 

pressure. The convection is negligible compared with the condensation because the latent heat 

released during condensation dominates over sensible heat fluxes due to convection 

(Schumacher, 2004). 

𝛛𝑻

𝛛𝒕
≅

𝛛𝑻

𝛛𝒕
|

𝒂𝒅𝒗.
−

𝑳𝒍𝒗

𝒄𝒑𝒎

𝐝𝒒𝒂

𝐝𝒕
.                                                    (6) 

In this case, we also assume negligible convection, 
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𝛛𝒒𝒂

𝛛𝒕
=

𝛛𝒒𝒂

𝛛𝒕
|

𝒂𝒅𝒗.
+

𝐝𝒒𝒂

𝐝𝒕
,                                                      (7) 

The reason of the change of the supersaturation can be divided into two parts, caused due to 

advection and condensation:  

𝛛𝒔

𝛛𝒕
=

𝝏(𝒒𝒂 𝒒𝒔)⁄

𝛛𝒕
= −
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𝒂𝒅𝒗.
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𝟏
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|
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𝟏
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𝛛𝒕
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𝒄𝒐𝒏𝒅.
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𝛛𝒔

𝛛𝒕
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𝒒𝒂𝑳𝒍𝒗
𝟐
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𝒒𝒔
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𝑹𝒗𝑻𝟐

𝛛𝑻
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𝒒𝒔
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                   (9) 

Eq. (9) is useful to evaluate the rate of supersaturation. The rate of supersaturation is a 

prognostic variable in many numerical models to evaluate the activation of the hygroscopic 

aerosol particles. The importance of local change of temperature and specific humidity is 

presented to evaluate the change of supersaturation ratio. In the current study the results of 

cooling rate are presented. Quantification of the effects responsible for the development of the 

cooling rate is not the purpose of the research. Similar methodology for change point detection 

of specific humidity time series can be also used, but the results are not presented here (our 

measurement system is not gives the opportunity to direct investigation of supersaturation). 

 

Window based change point detection method 

 

To analyse the cooling rate, we analysed the 10 s as well as 10 Hz time resolution temperature 

time series observed by the temperature sensors installed on the 30 m tower and from the sonic 

temperature, respectively. The temperature time series have been sampled 3–4 hours before the 

beginning of foggy event and divided into segments based on the breakpoints detected in the 

time series. Breakpoint detection was used because temperature decrease is not monotonous 

throughout this 3–4 hours’ time window. Cooling rate is equal to the slope of linear regression 

fitted to the time series of temperature. The breakpoints are identified using the “Window-based 

change point detection method” (Ahmed et al., 2008; Li et al., 2010; Matyasovszky & 

Ljungqvist, 2012; Truong et al., 2020). 

Window-based change point detection method is a non-parametric CUSUM (Cumulative 

Sum Control Chart) algorithm to detect abrupt changes in the time evolution of the data. This 

algorithm uses two sliding windows on the data series and statistical properties of the data series 

within these two windows are compared with a discrepancy measure (Ahmed et al., 2008; Li et 

al., 2010; Truong et al., 2020). If a discrepancy exists between the two data series inside the 

two sliding windows, then a peak is observed. Once the discrepancy finding procedure is 

completed, a peak finding processes is started to detect the breakpoints in the data series. The 

discrepancy can be calculated using the Student’s t-test or respective cost functions, which are 

present in the ruptures python library [1 – ruptures]. The discrepancy between the two sub-

signals (data series) for a cost function c(.) divided for each sliding window is given as: 

 

(𝑦𝑎,𝑡  , 𝑦𝑡,𝑏) =  𝑐(𝑦𝑎,𝑏) − 𝑐(𝑦𝑎,𝑡) − 𝑐(𝑦𝑡,𝑏)  (1 ≤ 𝑎 <  𝑡 <  𝑏 ≤ 𝑇),              (10) 

 

where {𝑦𝑡}𝑡=1
𝑇  is the input signal, and 𝑎 <  𝑡 <  𝑏 are the indices. The cost functions are used 

to test the homogeneity of the time series/signal. If the sub-signals (fragments) in a time 

series/signal are homogeneous, then the discrepancy of the cost function is lower, otherwise if 

the sub-signals are not homogeneous, then the discrepancy calculated in the cost functions are 

higher. The sliding windows 𝑎, . . . , 𝑡 and 𝑡, . . . , 𝑏 fall in the same segment if the statistical 
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properties (discrepancy) calculated using the cost function are the same. If the discrepancy 

calculated using the cost function is not the same or significantly higher, then these two 

segments are not similar to each other. 

The algorithm has a low time complexity and can detect single or multiple breakpoints in a 

data series. This method can be applied also if the number of change points or breakpoints in a 

data series is not known beforehand (Truong et al., 2020). The performance is improved as this 

algorithm removes the effect of data points related to the last detected breakpoints, and thus 

only normal data points are kept in a sliding window at a given time (Truong et al., 2020). 

The python package Ruptures [1 – ruptures] has been utilized for employing the Window-

based change point detection method, and each temperature time series has been analysed using 

two cost function namely CostL2 and CostRbf. CostL2 function also known as the Least 

squared deviation, is a function that detects mean-shifts in a signal or timeseries (Truong et al., 

2020). On the other hand, CostRbf function also known as the Kernelized mean change, is able 

to detect the changes in the probability distribution of a random variable. It is a non-parametric 

method and can be used for a wide variety of tasks of change point detection (Truong et al., 

2020). 

In the CostL2 or the mean shift model, the distribution of the variable is assumed to be 

Gaussian with fixed variance. This cost function is also mentioned in the literature as quadratic 

error loss and is given as follows: 

 

𝐶𝐿2(𝑦𝑎…𝑏) ≔  ∑ ||𝑦𝑡 −  �̅�𝑎...𝑏||2
2𝑏

𝑡=𝑎+1  ,                                     (11) 

 

where �̅�𝑎...𝑏 is the empirical mean of the signal 𝑦𝑎...𝑏. 

CostRbf is a Kernel-based change point detection cost function. Kernel-based methods can 

detect breakpoints in a non-parametric setting (Celisse et al., 2018; Truong et al., 2020). The 

original signal/timeseries is mapped on to a reproducing Hilbert space ℋ. The Hilbert space is 

associated with a user defined kernel 𝑘(. , . ): ℝ𝑑  ×  ℝ𝑑  →  ℝ. The mapping function, which 

maps the signal/timeseries on the Hilbert space is defined as 𝜙 ∶  ℝ𝑑  →  ℋ .  
𝜙 ∶  ℝ𝑑  →  ℋ is also known as a canonical feature map and it is defined as 

𝜙(𝑦𝑡) = 𝑘(𝑦𝑡 , . )  ∈ ℋ . The inner products and norm on ℋ for a kernel k can be defined as: 

 
⟨𝜙(𝑦𝑠)|𝜙(𝑦𝑡)⟩ℋ = 𝑘(𝑦𝑠, 𝑦𝑡)                                              (12) 

 

||𝜙(𝑦𝑡)||ℋ
2 = 𝑘(𝑦𝑡 , 𝑦𝑡)                                                  (13) 

 

For a given kernel 𝑘(. , . ): ℝ𝑑  ×  ℝ𝑑  →  ℝ, the associated cost function can be calculated 

as follows: 

 

𝑐𝑘𝑒𝑟𝑛𝑒𝑙(𝑦𝑎..𝑏) ≔  ∑ ||𝜙 (𝑦𝑡) −  �̅�𝑎..𝑏||ℋ
2𝑏

𝑡=𝑎+1                                 (14) 

 

where, {𝜙(𝑦𝑡)}𝑡=𝑎+1
𝑏  is the embedded/transformed signal in the Hilbert space and �̅�𝑎..𝑏 is the 

empirical mean of the embedded signal. The cost function is able to detect the mean shifts in 

the signal as it is assumed that under certain conditions of the kernel functions, the changes in 

mean shifts coincide with the changes in probability distribution (Celisse et al., 2018; Truong 

et al., 2020). Any inner product in ℋ can be translated in terms of the kernel k by using a kernel 

trick, by using the Eqs. 12 and 13 (Celisse et al., 2018). The cost function defined in the Eq. 

(14) can be written in simpler form after performing the kernel trick. For any samples 𝑦𝑠, 𝑦𝑡  ∈
 ℝ𝑑, the kernelized cost function is defined as: 
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𝑐𝑘𝑒𝑟𝑛𝑒𝑙(𝑦𝑎..𝑏) ≔ ∑ 𝑘(𝑦𝑡 , 𝑦𝑡) −  
1

𝑏−𝑎
 ∑ 𝑘(𝑦𝑠, 𝑦𝑡)𝑏

𝑠,𝑡=𝑎+1
𝑏
𝑡=𝑎+1                       (15) 

 

In this paper, the CostRbf function is an example of using a cost function based on Gaussian 

kernel. The CostRbf function is then defined as: 

 

𝐶𝑟𝑏𝑓(𝑦𝑎..𝑏) ≔ (𝑏 − 𝑎) −  
1

𝑏−𝑎
 ∑ exp(−𝛾 ‖𝑦𝑠 −  𝑦𝑡‖2) ,𝑏

𝑠,𝑡=𝑎+1                   (16) 

 

where 𝛾 > 0, is the bandwidth parameter. 

The advantage of using kernels is that they can be used on any data type, and the only pre-

condition is that we should be able to define the kernel on that data. 

 

Breakpoint detection and cooling rate 

 

Breakpoints detected in temperature data at 9 m, 23 m and 30 m heights 

The foggy event occurring in the time period of 3:30–22:30 UTC on 24th November in 2020 

was chosen to evaluate the cooling rate prior to the formation of the fog. Data observed in the 

time period of 00:00–04:30 UTC was analysed to calculate the cooling rate. Fog onset was 

detected by ceilometer (LUFFT CHM 15k) at 03:30 UTC. 

Figure 2 (a-b) reveals that multiple breakpoints have been detected using the window-based 

change point detection method. The breakpoints of time series of temperature observed at height 

of 9 m are denoted by red dashed lines and the corresponding timestamps are summarized in 

Table 2. The CostL2 function and CostRbf function used inside the window-based search 

method, detected 9 and 8 breakpoints, respectively. The first 8 breakpoints detected by the two 

cost functions are almost at the same timestamp with a small difference of only 2–3 minutes 

except for the 5th breakpoint where the time difference of 14 minutes can be found. 

Red, vertical dashed lines in Figure 2 (c-d) detect breakpoints for temperature observed at 

the height of 23 m. Both CostL2 and CostRbf functions used inside the window-based search 

method detect 5 points. The timestamps of the detected breakpoints are shown in Table 2. It 

can be seen from Table 2 that the 1st breakpoint detected by both the cost functions is at exactly 

same time, whereas the largest difference of 18 minutes is observed in the case of the 

3rd breakpoint. Such differences can be attributed to the fact that CostL2 function detects 

breakpoints on the basis of changes in mean, whereas CostRbf detects changes based on 

changes in probability distribution of the data series. 

Figure 2 (e-f) shows the breakpoints detected in the case of temperature data observed by 

sonic anemometer. Both cost functions detected 5 breakpoints. The two methods detect the 2nd, 

3rd and the 5th breakpoints at exactly the same time, while the remaining breakpoints were 

detected with a time differences of 10–20 s. 
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a)  
b)  

c)  d)  

e)  f)  

Figure 2: Temperature time series, sampled from 00:00 UTC to 04:30 UTC on 24th November, 2020. 

Detected breakpoints are denoted by vertical dashed red lines. Panel a) and b) denote the detected 
breakpoints for temperature observed at the height of 9 m, evaluated by detection methods of CostL2 

and CostRbf, respectively. Panel c) and d) denote the detected breakpoints for temperature observed at 

the height of 23 m, evaluated by detection methods of CostL2 and CostRbf, respectively. Panel e) and 

f) denote the detected breakpoints for sonic temperature (Mauder and Foken, 2015) observed by sonic 
anemometer at the height of 30 m, evaluated by methods of CostL2 and CostRbf, respectively. ([e-f] is 

corrected sonic temperature time series.) The sonic temperature was corrected based on the 

extrapolated main virtual temperature profile using the measurement in 9 m and 23 m. The sonic 
temperature was adjusted by –10.15 °C (using the mean virtual temperature at 30 m height for the 

measurement period). The time variation of sonic temperature is real, but the measured (original) 

values are slightly (more than 3.6% (in K)) overestimated. The deviation of raw values from real sonic 
(near virtual) temperature is due to the difference between the distances of the three pairs of sensors 

from sonic anemometer and the distance is set in the factory software for calculating temperature. 
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Table 2: Timestamps of breakpoints detected using CostL2 and Cost Rbf cost functions 

within the window-based break point detection method in the temperature time series 

observed by sensors at 9 m, 23 m and 30 m. (Temperature time series, 

sampled from 00:00 UTC to 04:30 UTC on 24th November, 2020.) 

S. 

No. 

T9m_L2 

[timestamp - 

UTC] 

T9m_Rbf 

[timestamp - 

UTC] 

T23m_L2 

[timestamp - 

UTC] 

T23_Rbf 

[timestamp - 

UTC] 

T30_L2 

[timestamp - 

UTC] 

T30_Rbf 

[timestamp - 

UTC] 

1 2020-11-24 

00:09:50 

2020-11-24 

00:14:50 

2020-11-24 

00:13:10 

2020-11-24 

00:13:10 

2020-11-24 

00:08:59 

2020-11-24 

00:09:09 

2 2020-11-24 

00:54:50 

2020-11-24 

00:56:30 

2020-11-24 

01:44:00 

2020-11-24 

01:43:10 

2020-11-24 

01:56:59 

2020-11-24 

01:56:59 

3 2020-11-24 

01:20:40 

2020-11-24 

01:19:50 

2020-11-24 

02:00:40 

2020-11-24 

01:56:30 

2020-11-24 

02:06:44 

2020-11-24 

02:06:39 

4 2020-11-24 

01:44:50 

2020-11-24 

01:47:20 

2020-11-24 

02:25:40 

2020-11-24 

02:43:10 

2020-11-24 

03:41:49 

2020-11-24 

03:41:49 

5 2020-11-24 

02:07:20 

2020-11-24 

02:13:10 

2020-11-24 

03:09:00 

2020-11-24 

03:14:50 

2020-11-24 

03:51:04 

2020-11-24 

03:51:09 

6 2020-11-24 

02:40:40 

2020-11-24 

02:26:30 

2020-11-24 

03:31:30 

2020-11-24 

03:32:20 

2020-11-24 

04:15:19 

2020-11-24 

04:15:19 

7 2020-11-24 
03:12:20 

2020-11-24 
03:18:10 

  
  

8 2020-11-24 

03:41:30 

2020-11-24 

03:37:20 

  

  

9 2020-11-24 

04:18:10 

   

  

 

Evaluation of cooling rate based on breakpoints detection 

The cooling rates were evaluated by using the detected breakpoints. Using linear regression, a 

line was fitted to each sector of the time series bounded by two breakpoints. Linear regression 

was performed over the sectors time series after 02:00 UTC, because the temperature started to 

decrease clearly after 02:00 UTC. Table 3 summarizes the slope and intercept parameters of 

lines that were fitted over 3 sectors of the time series of temperature observed at the height of 

9 m and 23 m (Figure 2(a-d)). In the case of sonic temperature data, the linear fitting was 

performed for only one sector of time series, because breakpoints were not detected by neither 

of the cost functions in the time interval of 02:00–03:30 UTC (before the fog onset). 

At both altitudes (9 m and 23 m) the sum of the sectors of the time series fragment is  

20–40 minutes long. For the temperature measurements done at 9 m and 23 m height, and using 

CostL2 function for detecting breakpoints, we found that the cooling rate was the largest in the 

third sector (which started 20–30 minutes before fog onset). The cooling rates were 

0.026 C min–1 (1.56 C hr–1) and 0.035 C min–1 (2.1 C hr–1), respectively. The lowest 

cooling rates of 0.011 C min–1 (0.66 C hr–1) and 0.018 C min–1 (1.08 C hr–1) were found in 

the second sectors. The average cooling rates evaluated by CostL2 (calculated as the average 

of all the three sectors) at the altitudes of 9 m and 23 m were 0.019 C min–1 (1.14 C hr–1) and 

0.023 C min–1 (1.38 C hr–1), respectively. 

Using the CostRbf function the largest and smallest cooling rates of 0.037 C min–1 

(2.22 C hr–1) and 0.017 C min–1 (1.02 C hr–1) can be found in the third and the first sector of 

temperature time series observed at the altitude of 23 m, respectively. In the case of time series 

observed at the height of 9 m, the largest cooling rate of 0.033 C min–1 (1.98 C hr–1) was 

observed in the first sector, which started 1.5 hours before the fog onset, followed by the third 

(0.028 C min–1 (1.68 C hr–1)) and the second sector (0.008 C min–1 (0.48 C hr–1)), 

respectively. For the sonic temperature data, since no breakpoints are detected between 02:00 

UTC and 03:30 UTC, we get a single sector of the time series. The evaluated cooling rates using 

the two different functions were the same at 0.017 C min–1 (1.02 C hr–1). 
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Using CostRbf function the average cooling rate for the altitudes of 9 m and 23 m are 

0.024 C min–1 (1.44 C hr–1) and 0.023 C min–1 (1.38 C hr–1), respectively. 

 

Table 3: Slope (C min–1) and intercept (C) parameters evaluated by linear regression method 
for each sector of time series of temperature observed at the heights of 9 m and 23 m, 

furthermore for that of sonic temperature observed at the height of 30 m. 

S.No. T9m_L2  T9m_Rbf 

 Time series sector 

[UTC] 

Slope  

(C min–1) 

Intercept 

(C) 

Time series fragment 

[UTC] 

Slope  

(C min–1) 

Intercept 

(C) 

1 2020-11-24 02:07:20 - 
2020-11-24 02:40:40 

–0.021 0.581 2020-11-24 02:13:10 -
2020-11-24 02:26:30 

–0.033 0.511 

2 2020-11-24 02:40:40 - 
2020-11-24 03:12:20 

–0.011 0.074 2020-11-24 02:26:30 -
2020-11-24 03:18:10 

–0.008 0.113 

3 2020-11-24 03:12:20- 
2020-11-24 03:41:30 

–0.026 -0.222 2020-11-24 03:18:10-
2020-11-24 03:37:20 

–0.028 -0.363 

S.No. T23m_L2 T23m_Rbf 

 Time series sector 

[UTC] 

Slope  

(C min–1) 

Intercept 

(C) 

Time series fragment 

[UTC] 

Slope  

(C min–1) 

Intercept 

(C) 

1 2020-11-24 02:00:40 -

2020-11-24 02:25:40 

–0.018 1.081 2020-11-24 01:56:30 -

2020-11-24 02:43:10 

–0.017 1.11 

2 2020-11-24 02:25:40 -
2020-11-24 03:09:00 

–0.018 0.59 2020-11-24 02:43:10 -
2020-11-24 03:14:50 

–0.016 0.261 

3 2020-11-24 03:09:00 -
2020-11-24 03:31:30 

–0.035 –0.01 2020-11-24 03:14:50 -
2020-11-24 03:32:20 

–0.037 -0.201 

 T30m_L2 T30m_Rbf 

S.No. Time series sector 

[UTC] 
Slope*  

(C min–1) 

Intercept* 

(C) 

Time series fragment 

[UTC] 
Slope*  

(C min–1) 

Intercept* 

(C) 

1 2020-11-24 02:06:44 -
2020-11-24 03:41:49 

–0.017 1.74  
 

2020-11-24 02:06:39 -
2020-11-24 03:41:49 

–0.017 1.74 
 

* Slope and intercept from the corrected sonic temperature time series.  

 

Conclusions 

 

The Budapest fog experiment was carried out during the winter of 2020–21  

(Nov 2020–April 2021) at the observatory of the HMS located at the edge of Budapest (station 

ID 12843). 

We utilized the temperature time series with a time resolution of 10 s and 10 Hz coming 

from the temperature sensors implemented at the altitudes of 9 m, 23 m, and raw sonic 

temperature from sonic anemometer implemented at a height of 30 m (on top of the tower, with 

preliminary correction) for calculating the cooling rate. The fog event that occurred on 

November 24 (03:30–22:30 UTC), 2020 was chosen to evaluate and analyze the cooling rate. 

Cooling near the surface layer is an important precursor for fog formation and cooling of the 

surface layer coupled with increase of relative humidity near the saturation allows the formation 

of water droplets by condensation resulting in onset of fog. Window based search algorithm 

present in the python ruptures library [1 – ruptures] was utilised to analyze the breakpoints in 

the temperature time series prior to the calculation of cooing rate. The breakpoints were 

detected using both the CostL2 and CostRbf functions. Time series of temperature observed 

after 02:00 UTC at the altitudes of 9 m, 23 m and 30 m were chosen to perform linear regression 

analysis. 

In case of data observed at the altitudes of 9 m and 23 m, three sectors, each of them roughly 

20–40 minutes long, were detected. The cooling rate was defined as the slope of the fitted linear 

equation. When CostL2 was used, the cooling rate was found to be the highest in the third 

sectors. The third sectors started 30–40 minutes before the fog onset and cooling rates in the 

third sectors at the altitudes of 9 m and 23 m were 0.026 C min–1 (1.56 C hr–1) and 

0.035 C min–1 (2.1 C hr–1), respectively. However, when using CostRbf function, the cooling 
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rate was the highest only in the third sector of data series observed at the altitude of 23 m, 

whereas in the case of temperature observed at 9 m the largest cooling rate was evaluated in the 

first sector. 

The average cooling rate (calculated as the average of all the three sectors) for 9 m 

temperature and 23 m temperature time series using CostL2 is 0.019 C min–1 (1.14 C hr–1) 

and 0.023 C min–1 (1.38 C hr–1), respectively. Whereas, when using CostRbf function, the 

average cooling rate were 0.024 C min–1 (1.44 C hr–1) and 0.023 C min–1 (1.38 C hr–1), 

respectively, for 9 m and 23 m temperature. 

Assembling the cooling rates evaluated by the CostL2 and CostRbf functions, we can say 

that the cooling rate at the altitude of 9 m is in the range of 1.14 C hr–1 – 1.44 C hr–1 and at 

the altitude of 23 m it is 1.38 C hr–1. We observe that with increase in height, the cooling rates, 

calculated by both Cost functions at 23 m, are the same whereas there is a larger difference at 

9 m height. Such differences can arrive due to the method in which both the cost functions 

detect breakpoints. CostRbf function (based on Gaussian kernel) essentially detects changes in 

the probability distribution of a random variable whereas Cost L2 detect mean shifts in a time 

series. This led to breakpoints getting detected at different timestamps causing difference in 

length of time series fragments. We can see from Table 3 that the length of the first sector in 

the case of temperature time series at 9 m is different as CostRbf function detected the 

breakpoint earlier than CostL2. 

In the case of corrected sonic temperature (using the reference extrapolated virtual 

temperature for 30 m level) time series, 6 breakpoints were detected by both the CostL2 and 

CostRbf functions. Since there were no breakpoints detected by both cost functions between 

02:00 UTC until the fog onset, only one cooling rate was evaluated by both cost functions with 

the same average value of 0.017 C min–1 (1.02 C hr–1). Price (2011) and Price et al. (2018) 

calculated the cooling rates for different locations with different topography. They found lower 

cooling rates in evening in wider and open valleys as compared to narrow and deep valleys due 

to the decoupling of narrow and deep valleys with the overlying flow. However, fogs appeared 

more in wide and open valleys as they were able to cool for longer time period and transformed 

into the coldest sites. The wide and open valleys cooled slowly at a rate of approximately 1 C 

hr–1 whereas narrower valleys cooled at 1.5 C hr–1. 

The calculation of cooling rate is significant in the sense that it can be used in the calculation 

of rate of change in supersaturation, which in turn is an appropriate prognostic variable in the 

microphysics schemes implemented in weather prediction models. We plan to investigate the 

rate of change in relative humidity and saturation prior to fog occurrence to better understand 

the fine structure of the fog evolution. 

 

Funding: The measurement campaign was performed in the frame of GINOP2.3.2-15-2016-

00007, GINOP-2.3.2-15-2016-00055, OTKA-138176 and CA20108 - FAIR NEtwork of 

micrometeorological measurements (FAIRNESS) COST Action. The experiment is connected 

with the PANNEX program which is part of the Regional Hydroclimate Project (RHP) of the 

World Climate Research Programme (WCRP). 
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