
Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r.com/ locate /chemolab
Simulation of reaction–diffusion processes in three dimensions using CUDA

Ferenc Molnár Jr. a, Ferenc Izsák b,d, Róbert Mészáros c, István Lagzi c,⁎
a Department of Theoretical Physics, Eötvös Loránd University, Budapest, Hungary
b Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Budapest, Hungary
c Department of Meteorology, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
d Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
⁎ Corresponding author. Department of Chemical an
Sheridan Road, Evanston, Illinois 60208, USA. Tel.: +3
2904.

E-mail address: lagzi@vuk.chem.elte.hu (I. Lagzi).

0169-7439/$ – see front matter © 2011 Elsevier B.V. A
doi:10.1016/j.chemolab.2011.03.009
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 November 2010
Received in revised form 9 March 2011
Accepted 17 March 2011
Available online 23 March 2011

Keywords:
Video card
Parallel computing
CUDA
Reaction–diffusion
Pattern formation
Numerical solution of reaction–diffusion equations in three dimensions is one of the most challenging applied
mathematical problems. Since these simulations are very time consuming, any ideas and strategies aiming at
the reduction of CPU time are important topics of research. A general and robust idea is the parallelization of
source codes/programs. Recently, the technological development of graphics hardware created a possibility to
use desktop video cards to solve numerically intensive problems. We present a powerful parallel computing
framework for solving reaction–diffusion equations numerically using the Graphics Processing Units (GPUs)
with CUDA. Four different reaction–diffusion problems, (i) diffusion of chemically inert compound, (ii) Turing
pattern formation, (iii) phase separation in the wake of a moving diffusion front and (iv) air pollution
dispersion were solved, and additionally both the Shared method and the Moving Tiles method were tested.
Our results show that parallel implementation achieves typical acceleration values in the order of 5–40 times
compared to CPU using a single-threaded implementation on a 2.8 GHz desktop computer.
d Biological Engineering, 2145
6 1372 2945; fax: +36 1372

ll rights reserved.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction

There are many spectacular and fascinating phenomena (Fig. 1) in
the nature and laboratories [1], which can be described and
understood by reaction–diffusion systems (e.g. autocatalytic front
propagation [2], chemical waves [3], Turing patterns [4,5], seashell
pattern formation [6], Liesegang phenomenon [7], etc.). Generally,
reaction–diffusion systems aremathematical models that describe the
spatial and temporal variations of concentrations of chemical sub-
stances involved in a given process. From the mathematical point of
view, the reaction–diffusion system is a set of parabolic partial
differential equations (PDEs), and it has a general form:

∂→c
∂t = −∇⋅ −D∇→c

� �
+ R →c

� �
; ð1Þ

where →c = c1 t;xð Þ; c2 t;xð Þ;…; ck t; xð Þð Þ denotes the concentration set
of the chemical species, D is a diagonal matrix consisting of the
diffusion coefficients D1, D2,…, Dk, ∇ denotes the del operator, and R,
which is usually nonlinear term, represents the chemical reactions.
Eq. (1) can be rewritten into a more specialized form if the diffusion
coefficients do not depend on location (i.e. diffusion processes are
isotropic):

∂→c
∂t = D∇2→c + R →c

� �
; ð2Þ

where ∇2 is the Laplace operator.
In recent years, the technological development of consumer graphics

hardware has created a possibility to use desktop video cards to solve
numerically intensiveproblems invariousfieldsof science (chemistry and
physics [8–17], astronomy [18–20],medical sciences [21–23], geosciences
[24–26], environmental sciences [27–30] andmathematics [31,32]), since
their computational capacity farexceeds thatof thedesktopCPUs [33–35].
UsingGPUs (processors of video cards) for general purpose calculations is
called GPGPU. Itsmain advantage is the high cost-effectiveness compared
to supercomputers, clusters or GRID systems. Programming GPUs for
general computation was a great challenge in the past, but NVIDIA has
created a parallel computing architecture called Compute Unified Device
Architecture, or CUDA [36], which significantly simplifies the program-
ming. Programs can be written in the well-known C language with some
CUDA-specific extensions. The NVIDIA nvcc compiler, a software
development kit with utilities, libraries and numerous examples, and
also a complete documentation are freely available [36].

There have only been a few trials in the literature to solve various
types of PDEs using CUDA environment [31,37–39]. In this paper we

http://dx.doi.org/10.1016/j.chemolab.2011.03.009
mailto:lagzi@vuk.chem.elte.hu
http://dx.doi.org/10.1016/j.chemolab.2011.03.009
http://www.sciencedirect.com/science/journal/01697439


Fig. 1. Reaction–diffusion patterns in animate and inanimate systems. (a) Striped patterns on skin of animals (zebra and zebra fish); (b) chemical waves in a Belousov–Zhabotinsky
reaction; (c) Turing pattern in a 2D gel sheet (image courtesy of Dr. István Szalai); (d) precipitation (Liesegang) pattern formation.

77F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
present efficient techniques to utilize GPU computing power using
CUDA to solve several reaction–diffusion problems in three spatial
dimensions. This new method provides a much more efficient way to
perform these simulations than using CPUs of desktop computers.

2. Numerical implementation of reaction–diffusion systems

The most convenient and common technique for solving time
dependent PDEs is called the method of lines, where “line” refers to
the time levels. This approach reduces the set of PDEs in three
independent variables to a system of ordinary differential equations
(ODEs) in one independent variable, time. The system of ODEs can
then be solved as an initial value problem. Usually the grid can be
fixed over the computational domain, where the unknown function of
physical quantities (here a vector function) is estimated in each time
step. In a usual approach, which we follow, the spatial derivatives in
the equation are approximated with finite differences at a fixed time.
In the reaction–diffusion equations only the Laplacian differential
operator is present. Approximation of Laplacian for some function c at
any grid point can be performed by calculating a linear combination of
the neighbouring grid points using a specific set of coefficients
applying Taylor expansion. The following nineteen-point approxima-
tion for Laplacian was used for 3D simulations (supposing equidistant
gridding in all dimensions):

Lapli;j;k = ∇2cli;j;k =
1

6h2
∑

p=1;q=1;r=1

p=−1;q=−1;r=−1
Tpqrc

l
i + p; j + q;k + r

; ð3Þ
Tp;q;−1 = Tp;q;1 =
0 1 0
1 2 1
0 1 0

0
@

1
A; Tp;q;0 =

1 2 1
2 −24 2
1 2 1

0
@

1
A; ð4Þ

where ci,j,k is the value of c on the grid point (i, j, k), h is the spatial
resolution of the grid (grid spacing) in all three dimensions, and l
corresponds to the given chemical species involved in reaction–
diffusion process. This approximation takes more computational
effort than the more commonly used seven-point stencil. While its
precision is the same, it provides better isotropy on rectangular grids.

The values at the next time level can be obtained with an explicit
or implicit time stepping. We start solving the initial value problem
with initial condition →c t = 0ð Þ = →c0. The simplest numerical
integration scheme – forward Euler method – was used, which
gives that for any time t

cli; j;k t + δtð Þ = cli; j;k tð Þ + DLapli; j;k + R cli; j;k tð Þ
� �h i

δt; ð5Þ

here δt is the time step. Although a scale of more powerful time
stepping methods are available, our aim is rather to illustrate the
computational power provided by CUDA.

3. Basics of CUDA

The main concept of CUDA parallel computing model is to operate
with tens of thousands of lightweight threads, grouped into thread
blocks. These threads must execute the same function with different



78 F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
parameters. This function, which contains all the computations and
runs in parallel in many instances is called the kernel. Instances of the
kernel are identified by thread and block indices. Threads in the same
thread block can synchronize execution with each other, by inserting
synchronization points in the kernel, which must be reached by all
threads in the block before continuing execution. These threads can
also share data during execution. This way several hundred threads in
the same block can work cooperatively. Threads of different thread
blocks cannot be synchronized and should be considered to run
independently.

It is possible to use a small number of threads and/or small number
of blocks to execute a kernel, however, it would be very inefficient.
This would utilize only a fraction of the computing power of the GPU.
Therefore, CUDA is the best suited to those problems that can be
divided into many parts, which can be computed independently (in
different blocks), and these should be further divided into smaller
cooperating pieces (into threads).

There are several types of memory available in CUDA designed for
different uses in kernels. If used properly, they can increase the
computation performance significantly. The global memory is essen-
tially the random access video memory available on the video card. It
may be read or written any time at any location by any of the threads,
but to achieve high performance access to global memory should be
coalesced, meaning the threads must follow a specific memory access
pattern. More complete (and hardware-revision dependent) descrip-
tion can be found in the Programming Guide [40]. A kernel has access
to two cached, read-only memories: the constant memory and the
texture memory. Constantmemorymay be used to store constants that
do not change during kernel execution, and all instances of a kernel
use them regardless of thread and block indices. Texturememorymay
be used efficiently when threads access data with spatial locality in
one, two, or three dimensions. It also provides built-in linear
interpolation of the data. There is also a parallel data cache available
for reading and writing for all the threads of the same thread block
called the shared memory. It makes the cooperative work of threads in
a block possible. It is divided into 16 banks. Kernels should be written
in a way to avoid bank conflicts, meaning the threads which are
executed physically at the same time should access different banks
[40].

Memory management and kernel execution are controlled by
CUDA library functions in the host code (the one which runs on the
CPU). While the kernels are executing on the device, the CPU
continues to execute host code, so CPU and GPU can work in parallel.
Table 1
Reaction–diffusion problems with equations, parameters, initial and boundary conditions u

Phenomenon Equations Parameters

Diffusion ∂c
∂t = D∇2c

D=1, h=1

Turing pattern
formation (Turing)

∂c1
∂t = D1∇2c1 + c1−c31−c2;

∂c2
∂t = D2∇2c2 + γ c1−αc2−βð Þ

D1=5.0×1
D2=5.0×1
h=6.2×10
δt=5.0×10
α=0.5, β=
γ=26.0

Phase separation
behind a chemical
front using Cahn–
Hilliard equation (CH)

∂c1
∂t = D1∇2c1−k1c1c2−k2c1c3;

∂c2
∂t = D2∇2c2−k1c1c2;

∂c3
∂t = k1c1c2−k2c1c3−λ∇2 εc3−γc33 + σ∇2c3

� �

D1=D2=1
δt=0.02, k1
k2=0.005,
λ=ε=γ=

Atmospheric advection–
diffusion process
(Advection)

∂c
∂t = −∇⋅ →uc

� �
+ D∇2c + E

D=100 m2

δt =5 s, ux=
uy=1.0 m s
E=10 mol
Up till now, many CUDA-capable video cards and other computing
devices were produced with different capabilities. All devices have a
special version number which indicates the GPU's computational
skillset, called compute capability. It is important to distinguish devices
with different compute capabilities. The first generation CUDA
devices, based on the G80 GPU, have compute capability 1.0 and 1.1.
The second generation is based on the more advanced GT200 GPU
with compute capability 1.2 and 1.3. Finally, the newest GPUs belong
to the third generation, which have compute capabilities 2.0 and 2.1,
and they are based on the Fermi architecture. Although the basic
concepts apply to all CUDA devices, different generations have
different rules for achieving maximum performance. In this paper,
we consider first and second generation GPUs.

4. Application

Solving reaction–diffusion equations fits well to the architecture of
CUDA. The basic ideas are the following. Concentrations of the species
in a simulation can be stored in global memory on the device. We can
assign computation of the next time level to a kernel function,
assigning threads to compute individual grid points. The rectangular
space represented by the grid points can easily be splitted to smaller
parts, which can be assigned to blocks. Shared memory within a block
utilised in the approximation of the spatial derivatives, because this
computation requires data which belongs to neighbouring grid points
(and threads). Physical constants and other parameters of a
simulation can be stored in the constant memory.

Two very important performance guidelines must be followed to
reach maximum performance: accessing (reading or writing) global
memory should follow a coalesced access pattern, and accesses to the
shared memory should be without bank conflicts. CUDA devices from
the first generation have very strict rules for achieving coalesced
memory access, which result in a computational solution for them and
another one for the second generation. However, a solution which is
optimized well for the first generation of devices should also run very
efficiently on the devices of second generation with minor adjust-
ments to some parameters.

Four different reaction–diffusion problems were chosen and
solved using CUDA to illustrate the capability and efficiency of GPU
computing. The first one is the pure diffusion, which presents the
‘core’ mechanism in all reaction–diffusion related problems. The
second example is the most famous and well-known Turing pattern
formation. Here the diffusion is coupled to nonlinear chemical
sed in this study.

Initial conditions Boundary conditions

, δt=0.02 c0=1.0 inside a sphere
(r=20) in the middle,
c0=0.0 elsewhere

No-flux

0−5,
0−3,
−3,
−4,
0.09,

c10=1.0+σ, c20=1.0+σ,
σ=uniform random
between −5.0×10−4

and 5.0×10−4.

No-flux

, h=1,
=0.2,

σ=1.0

c10=0.0,
c20=1.0,
c30=−1.0

No-flux for c2 and c3,
Dirichlet for c1=10.0
at the x=0 plane,
noflux for c1 at other
sides of simulated
space

s−1, h=100 m,
5 m s–1,

–1, uz=5.0 sin(t / 500 s) m s–1

dm−3 s−1 (emission term)

c0=0.0 No-flux



Fig. 2. Diffusion structure of a chemical species from the centre at (a) t=5×103 and
(b) t=5 × 104. A detailed parameter set used in the simulation can be found in the Table 1.

Fig. 3. Representation of the simulated space (a), cells indicate how the space is split
and assigned to blocks in the Shared method. The first layer of points is assigned to
blocks in the first step, then the second layer in the second step, etc. The darker block's
evolution is depicted in (b). Here, each cell corresponds to a grid point in simulation.
The black rectangle indicates data which is used to compute Laplacian in the points
shown in darker colour. The three columns are the same data, only shown separately to
visualize iteration steps.

79F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
reactions. This framework can be applied to many reaction–diffusion
problems. The third problem describes a phase separation in chemical
systems using the Cahn–Hilliard equation. The curiosity of this
equation originates from the fact that it contains fourth order spatial
derivatives. Our last example is an extension of the pure diffusion
transport problem with advection. This arises in many areas,
especially in air pollution, where the transport of air pollutants
consist of two main transport phenomena (advection – transport by
wind field and turbulent diffusion). From the numerical point of view
these four examples above can probably cover the skeleton of all
reaction–diffusion problems. The corresponding equations, initial and
boundary conditions with parameters used can be found in Table 1.

4. Results and discussion

4.1. Reaction–diffusion problems

The first application is a simple diffusion problem without any
reactions (Table 1). Here a chemically inert compound diffused from
the centre of the computational domain. During this process the
diffusing species can reach outer regions (Fig. 2). The simulation of
this problem is essentially calculating the Laplacian operator on all of
the grid points and updating concentrations every time step.
Therefore, it is easier to review the computational solution and
performance in this simple case before the main concepts can be
applied to more complex simulations.
The main question in computing the Laplacian is how to split the
computational job on the domain (grid) to smaller rectangular blocks,
whichwill be assigned to thread blocks, where a single thread updates
a single grid point. Using the stencil in Eq. (4), data from nineteen grid
points should be read to update one point, but since these are
neighbouring points, data of every point will be read nineteen times
(by its thread and its neighbours) while updating all of the grid. In
order to avoid reading so many times from the slow global memory,
data should be copied to the shared memory of a thread block. Using
this stencil, a rectangular block will require an extra layer of grid
points around it to allow computation on all points in the block. To
read this data, one way is that after all threads read their
corresponding grid points into shared memory, some threads read
the extra layer. The other way is that although all threads read their
corresponding grid points to shared memory, the ones on the edge do
not compute, and the blocks overlap in every direction. We found that
the second approach is generally faster, however it results in a read
redundancy: grid points where the blocks overlap will be read more
than once in a single time step. This measure can be calculated by the
following formula:

read redundancy =
width

width−2
⋅ height
height−2

⋅ depth
depth−2

; ð6Þ

wherewidth, height and depth are the dimensions of a block. If there is
no overlap in a given direction (see later) then that factor can be
eliminated in the formula.

We can also utilize the fact that block indices are only two
dimensional in CUDA (though blocks themselves are three-dimen-
sional). We cannot assign all the “blocks” of grid points to thread
blocks at once, instead, we assign only a thin, one block wide layer,

image of Fig.�2
image of Fig.�3


Fig. 4. Block iteration technique for approximation of the Laplacian in the Moving Tiles
method. Coalesced reading and writing of global memory is achieved on the first
generation of CUDA devices.

Fig. 5. Evolution of Turing patterns at (a) t=2×105 and (b) t=4×105. Domains in
(a) and (b) represent the isosurface of c1=0.12 and c1=0.05, respectively. A detailed
parameter set used in the simulation can be found in the Table 1.

80 F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
and the kernels iterate though the simulated space in the third
dimension. Since the blocks must overlap, the last two z-layers of data
can be kept in the shared memory instead of reading them again from
global memory, as the blocks iterate though the space (Fig. 3). We call
this solution the simple “Shared” method because it utilizes the
shared memory in a simple way. It is very similar to the 3D finite
difference computation example in the CUDA SDK [41], but in our case
the stencil uses off-axis elements, so we need sharedmemory for all z-
layers in the block, not only for the central z-layer. Moreover, the
Shared method fits only the second generation of CUDA devices,
because all global memory accesses are uncoalesced according to the
strict rules of the first generation of CUDA devices.

For first generation devices the thread blocks must iterate on the
first dimension, and they must read and write global memory starting
at an address multiple of 64 bytes, therefore the block width must be
16 (using 4-byte floats), to achieve coalesced access. Each block must
use a wide tile of shared memory for (1+2×16)×height×depth
elements. The extra shared memory is used as a streaming buffer for
the global memory as depicted in Fig. 4. In an iteration step data from
the global memory is read to the second 16-element wide part of the
shared memory. Then Laplacian can be computed on all elements of
the first 16-element wide part, because the extra layer of data
required on the left edge is provided from the previous step in the 1-
element wide part, and the right edge is provided by the newly read
data in the second 16-elementwide part. After computing andwriting
the results back to global memory, the tile is moved to the right by 16
elements, and the iteration continues. The Moving Tiles method
achieves coalesced memory access and it can be implemented
without shared memory bank conflicts, because the block width is
16, which is equal to the number of shared memory banks. However,
because of the high shared memory requirement less blocks can be
allocated on a multiprocessor at once, limiting the performance for
more complicated reaction–diffusion systems.

On the edge of the simulated space, the outermost grid points
cannot be updated (the Laplacian cannot be computed), because they
have no outer neighbours. Instead, these points are boundary points,
their values are set according to the boundary conditions of the PDE
before each time step. We use three separate kernels for updating
these values on the left and right, top and bottom, and front and back
sides of the simulated space, because the space is not necessarily cube
shaped. Three additional kernels are updating the edges of the space
parallel to the x, y, and z axes. Corners do not need values because the
stencil does not use them. These kernels are not optimized because
their job is very small compared to the Laplacian computation, they
contribute approximately 2% to the computational time.

Our second simulation example is a very extensively studied
problem, both theoretically [42–44] and experimentally [4,5,45], in
reaction–diffusion systems. Turing pattern formation occurs in case of
sustained nonequilibrium conditions, where spatial patterns arise
from an instability in a uniform medium. It is believed that several
pattern formations in biology could be described by similar models
(e.g. skin of certain animals) [46]. From the mathematical point of
view the simplest one is a two-variable so-called “activator–inhibitor”
model (Table 1). The activator generates itself by an autocatalytic
process and also activates the inhibitor. However, inhibitor can
disrupt this autocatalytic process. The necessary condition for Turing
pattern formation is that the diffusion coefficients of the activator and
inhibitor species should be different. The simulation is started from
the homogeneous distribution of the both species introducing small
perturbation in initial conditions. During the evolution the effect of
these small spatial perturbations was more and more pronounced
regarding visual appearance of pattern via this specific reaction–
diffusion mechanism (Fig. 5).

Implementation of this problem is very similar to the solution of
the diffusion equation. There are two species and corresponding
arrays in global memory instead of one. In the kernel, twice as many
shared memory is required. Again, every computational step of the
Laplacian should be done twice, once for each species. These
computations cannot be separated because of reaction terms in the
equations, which make them coupled PDEs. If we calculated the
diffusion and the reaction separately then we would have to read and
write the data of every species at least twice.

The third model presents the pattern formation through a phase
separation in the wake of a moving diffusion front [47,48]. Cahn–
Hilliard equation was used to describe the phase separation [49]. This
equation numerically is very challenging, because it contains fourth

image of Fig.�4
image of Fig.�5


Fig. 6. Evolution of a moving precipitation pattern at (a) t=8×103 and (b) t=9×104.
Pattern moves upward. A detailed parameter set used in the simulation can be found in
the Table 1.

Fig. 7. Plume structure of an inert chemical species in the atmosphere originated from a
point source. Red and black colours correspond to the high and low concentration of air
pollutant. The size of the domain is 144×144×384. A detailed parameter set used in
the simulation can be found in the Table 1.

81F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
order derivatives. There are three processes included. First, the
reaction of two electrolytes (which were initially separated in
space) yields a chemical compound called intermediate species. This
reaction provides the source for the precipitation, which is modeled as
a phase separation of this intermediate product described by the
Cahn–Hilliard equation with a source term. Finally, precipitate can be
redissolved by the excess of one of the initial electrolytes, and this
appears as a sink term both in the Cahn–Hilliard equation and in the
reaction–diffusion equation (Table 1). Detailed experimental and
theoretical description of this phenomenon can be found in Refs
[47,50–52]. During the evolution of the pattern, first a homogeneous
precipitation layer forms, which travels through the medium via
coarsening of the pattern (Fig. 6).

During the computation data (concentrations) of all species must
be loaded to shared memory at the same time, because all equations
are coupled to each other. However, the Cahn–Hilliard equation is a
fourth order PDE, it contains a biharmonic operator. Approximation of
this operator is usually a non-compact stencil (using second
neighbours as well as first neighbours). However, the stencil itself is
numerically the same as applying the stencil of Laplacian twice on the
data. Therefore, the biharmonic operator can be approximated by
computing the Laplacian, applying boundary conditions again then
computing Laplacian again on this data. The first Laplacian compu-
tation must be separate and completely finished before the rest of the
computation is started, therefore two computing kernels were used.
The first one is essentially the same as the kernel for diffusion, only
without time integration. The second kernel must read data from
arrays of all species (A, B and C) and Laplacian of the intermediate
product (C), compute all reaction and diffusion terms then update
concentrations of A (c1), B (c2) and C (c3). This is a large kernel that
requires many resources to be launched and have a significant
computational time.

Our last example is an advection–diffusion problem, which has a
great relevance in air pollution modelling. Solving diffusion–advec-
tion equations to describe the spread and/or transformation of air
pollutants is a very important computational and environmental task
(Table 1) [53,54]. The numerical simulations must be obviously
achieved faster than in real time in order to use them in decision
support [55]. A feasible way is the parallelization of the source code
using supercomputers, clusters or GRID [56–60]. However, only a few
preliminary trials have been presented to use GPU computing for air
quality modelling [27–29]. Fig. 7 shows the structure of the plume of
an inert species originated from a single point sourcewith a sinusoidal
advection field.

From the computational point of view this simulation is very
similar to the simple diffusion problem, however, an extra advection
term is added (Table 1). Data read into the shared memory for
Laplacian computation can be used to approximate first derivatives
for advection. An upwind approximation was used to provide a stable
solution.

It is important to note that only 32-bit floating point calculations
are available with high enough performance on the devices used, thus
we have to consider the issue of numerical precision and accuracy.
Our initial tests (on CPU only) indicated that there is no significant
difference between results of the single and double precision
simulations on the time scales of our numerical simulations, therefore
in these cases the accuracy of floating point computations is sufficient.
The GPU's precision on mathematical functions is documented in the
appendix of the Programming Guide [40]. Reaction–diffusion calcu-
lations are implemented using only additions and multiplications, for
which the CUDA devices follow the IEEE-754 standard, therefore they
have the same precision as the CPU computations.

A sample source code for both CPU and GPU versions are freely
available to download from a web page [61], terms of use are also
included on this page.

4.2. Performance

CUDA architecture is different from cluster or grid architectures in
that the user must explicitly consider several low-level optimizations
specific to CUDA in order to achieve high overall simulation speed. The
following aspects of optimization should be considered: memory
bandwidth utilization, hiding memory latency, maximizing instruc-
tion throughput, avoiding bank conflicts and warp divergence, and
maximizing the number of active warps on the multiprocessor
(occupancy).

First of all, it can be identified that kernels responsible for com-
puting boundary conditions contribute only 1–2% of computational

image of Fig.�6
image of Fig.�7


Fig. 8. Performance analysis on a first (GeForce 8800 GTX) and a second (GeForce GTX
275) generation video cards solving four different reaction–diffusion problems with the
Shared method (a) and the Moving Tiles method (b).

82 F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
time, when a cube shaped domain is used. Therefore, the primary goal
is to optimize the computing kernels. Global memory bandwidth is
utilized best if accesses to it are coalesced. Second generation devices
make all global memory accesses coalesced, however, on first
generation devices only the Moving Tiles method has coalesced
memory access. The Shared method has always uncoalesced memory
access, which means that 32-byte memory requests are issued for
accessing each 4-byte (float) element in the arrays, wasting 7/8th of
available bandwidth. This has a significant impact on overall
performance that accounts for the difference between the Shared
method and the Moving Tiles method on first generation devices, see
Fig. 8.

Divergence in the warps cannot be avoided completely, because
threads on the edge of the block do not compute, while the rest of the
threads do. However, after the computation is finished in the inner
threads, all threads converge back to the common execution path by a
synchronization. Choosing which threads should compute and which
ones should not is a very complex condition and it is evaluated inside
a loop (along z axis in the Shared method and along the x axis in the
Moving Tiles method). The conditions depend mainly on thread
indices, which do not change during kernel execution. Therefore,
instruction count can be lowered significantly by precomputing the
condition before the loop and storing it in a bool variable.

The most difficult task is the choice of block dimensions (the
number of threads in a block). On one side, we should maximize the
size of the block to minimize read redundancy caused by the
overlapping of blocks. The read redundancy can be significantly
reduced by using blocks with large dimensions along the axes where
they overlap. On the other hand, larger blocks need more shared
memory limited to 16 KB per multiprocessor, and more registers
limited to 8192 and 16,384 per multiprocessor on first and second
generation devices, respectively. In order to have a high multipro-
cessor occupancy more than the half of these resources should not be
used, so that two blocks can be active on a multiprocessor instead of
only one. However, whether high occupancy or low read redundancy
results in higher performance depends on the simulation. The optimal
configurations were determined by running test simulations, and
these results are summarized in Table 2.

On the first generation devices the Shared method is very slow
because of the uncoalescedmemory access. The best speed is achieved
if the read redundancy is lowered by using wide and tall blocks,
minimizing block overlap area. Only a single layer of threads
computes in the block, which is insufficient to hide memory latency.
If we try to hide this latency by having a deeper block (more threads
would compute), we would have to lower the width and height,
which would increase the read redundancy, and reading that extra
memory uncoalesced would slow down the computation even more.
The maximum block size is either limited by the maximum number of
threads allowed (512) or the number of available registers.

On the second generation devices the global memory access is
always coalesced, and hiding its latency becomes important. The
maximum performance is determined by the balance between
minimizing read redundancy by increasing width and height and
increasing the ratio of threads that compute (to hidememory latency)
by increasing depth.

The Moving Tiles method is ideal for both generations. For the first
generation, however, the block width must be 16 in order to have a
coalesced memory access. It also means the block height and depth
will be small and read redundancy will be high, which must be
minimized for maximum performance. Height×depth can be at most
32. A trivial 8×4 factorization would cause 2.67 times read
redundancy. Instead, we use 6×5, resulting in 2.5 times read
redundancy, and 480 threads in a block. Moreover, when the kernel
requires more than 16 registers, the register count becomes a
limitation and the height and the depth have to be lowered even
further. Despite the high read redundancy the simulation is faster this
way than having smaller width and uncoalesced memory operations.

On the second generation devices the block width can be varied,
and the global memory access remains coalesced. Best performance is
reached by maximizing the number of threads that compute in a
block, thereby hiding memory latency. This results in cube shaped
blocks with 8×8×8 threads. However, the Cahn–Hilliard simulation's
shared memory requirement allows only for 8×8×7 threads. In case
of the Turing pattern formation and the advection–diffusion problem
the 8×8×8 configuration is available, but they would need more than
half of available shared memory, limiting the occupancy to 50%. Using
8×8×7 threads, two blocks are active on a multiprocessor, can result
in 88% occupancy.

After determining the configurations for maximum performance
the simulation speedwasmeasured and plotted against the number of
grid points (Fig. 8). All performance tests were performed on a
desktop computer with 2.8 GHz Core 2 Duo processor, 3.0 GB RAM,
and 32-bit Windows operating system. Two video cards were used: a
GeForce 8800 GTX, which represents the first generation of CUDA-
capable devices, and a GeForce GTX 275, which belongs to the second
generation. Both cards operated on factory default clock frequencies.
We compared the simulation speed to reference CPU implementa-
tions that use a single thread on the CPU. They are compiled from a
single source file to allow inline expansion for all functions, opening
the way for elaborate optimizations by the compiler, resulting in a
generally 20% faster CPU simulation. Numerical parameters for the

image of Fig.�8


Table 2
Optimal configurations for the computing kernels of the simulations, and the constraints that provided these results. RR: minimize read redundancy, RM: registers per
multiprocessors, TB: maximum number of threads per block, HL vs RR: hide most memory latency while minimizing read redundancy, SM: maximum available shared memory, OC:
occupancy maximized by having smaller blocks, allowing two active blocks per multiprocessor. The number of chemical species refers to the number of variables in the PDEs.

Shared memory
requirement (bytes)

Simulation name Number of chemical
species (N)

Block dimensions (W×H×D) Register usage Maximum performance
(its limiting factor)

First generation (8800 GTX)
Shared method W×H×D×N×4 Diffusion 1 16×10×3 15 RR (TB)

Turing 2 16×10×3 16 RR (TB)
CH 4 16×9×3 18 RR (RM)
Advection 1 16×10×3 16 RR (TB)

Moving Tiles method (2×W+1)×H×D×N×4 Diffusion 1 16×6×5 15 RR (TB)
Turing 2 16×5×5 18 RR (RM)
CH 4 16×5×4 22 RR (RM)
Advection 1 16×6×5 16 RR (TB)

Second generation (GTX 275)
Shared method W×H×D×N×4 Diffusion 1 8×8×8 15 HL vs RR

Turing 2 8×8×8 16 HL vs RR
CH 4 8×8×8 20 HL vs RR
Advection 1 8×8×8 17 HL vs RR

Moving Tiles method (2×W+1)×H×D×N×4 Diffusion 1 8×8×8 13 HL vs RR
Turing 2 8×8×7 16 HL vs RR (OC)
CH 4 8×8×7 20 HL vs RR (SM)
Advection 1 8×8×7 16 HL vs RR (OC)

Table 4
Pseudocode for the kernel of the Shared method. Variables tx, ty and tz represent the
current thread's x, y and z indices, variables bW, bH and bD represent the block's width,
height and depth (the number of threads inside it), respectively. The code indicates
input and output arrays only for one species, for simplicity. In real programs, they
represent separate arrays for all species involved in the simulation.

kernel SharedMethod(float array C_in [Depth][Height][Width],

float array C_out [Depth][Height][Width])

declate shared float array Cs [bD][bH][bW]

83F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
simulations can be found in Table 1, pseudocodes for the reference
CPU version and the kernels of both GPU solutions are given in
Tables 3, 4 and 5, respectively. Execution times were measured using
timer functions provided by CUDA for at least ten thousand time steps
in each simulation. From this data, the simulation speed is calculated
as the total number of time steps taken in all grid points (number of
time steps×width×height×depth) divided by the run time. This
formula gives simulation speeds in Mpoints/s unit.

We always indicate the effective simulation speed, which includes
the computation of boundary conditions. Generally, more complicat-
ed simulations provide lower Mpoints/s values. In case of the
sequential version the number of grid points (in the range considered
in the GPU simulations) had no measurable effect on simulation
speed. Results are listed in Table 6, where CPU speeds are also
compared to GPU performance using 256×256×256 grid, where the
GPU's dependence on grid size diminishes.

According to the measurements, the Moving Tiles method is
almost always faster than the Shared method. Its relative advantage is
more apparent on the 8800 GTX, because the Shared method causes
uncoalesced memory access. On the GTX 275 the Moving Tiles is still
faster (except for the Turing simulation), but the relative advantage is
smaller. This is mainly because although all memory operations are
coalesced on the second generation devices, the unaligned memory
requests of the Shared method are usually serviced in two coalesced
memory operations, but the aligned requests of the Moving Tiles
method are always serviced in one coalesced memory operation.

The GTX 275 gives on average 3.4 times faster simulation than the
8800 GTX using the Shared method and 2.5 times faster than
Table 3
Pseudocode for the CPU implementation. For GPU implementations, loops on line 4 and
6 are replaced by kernels, see Tables 4 and 5.

1 allocate two float arrays for each species: first, second

2 load initial values to first arrays

3 for step=1 to maxSteps

4 for all boundary points

5 calculate boundary condition in first arrays

6 for all grid points

7 compute Laplacian term from first arrays

8 compute reaction terms from first arrays

9 store updated values in second arrays

10 swap first and second arrays

11 export first arrays if necessary

12 free allocated memory
simulation using the Moving Tiles method. The difference is larger
in case of the Shared method because of the uncoalesced memory
operations on first generation devices discussed earlier. The rest of the
differences for both methods are explained by the different
computing resources available on the video cards. The 8800 GTX
has 16 multiprocessors running at 1350 MHz, while the GTX 275 has
30 multiprocessors running at 1404 MHz, giving 1.95 times higher
theoretical GFlops. The 8800 GTX has 86.4 GB/s theoretical bandwidth
on global memory, while the GTX 275 has 127 GB/s bandwidth. It
means that both memory operations and computations are faster, but
they do not account for all the speed difference. The third factor is the
ability to hide memory latency, which is the most difficult to estimate.
The GTX 275 has twice as many registers per multiprocessor, which
means it can have two active blocks per multiprocessor, when the
8800 GTX can have only one, thus it can hide latency better. These
factors together result in that the GTX 275, and generally all second
generation CUDA devices are much better suited to run reaction–
diffusion simulations than the first generation.
i=index for C_in [tz][by*(bH-2)+ty][bx*(bW-2)+tx]

read C_in [i] into Cs [tz][ty][tx]

for k=0 to Depth/(bD–2)

synchronize threads

if this thread is not on the edge of the block

compute Laplacian from Cs array

compute reaction and/or advection terms from Cs array

store updated value in C_out [i]

synchronize threads

if tz N= bD-2

Cs [tz-bD+2][ty][tx]=Cs [tz][ty][tx]

synchronize threads

i=index for C_in [(k+1)*(bD - 2)][by*(bH-2)+ty][bx*(bW-2)

+tx]

if tz N= 2

read C_in [i] into Cs [tz][ty][tx]

end for

end kernel



Table 5
Pseudocode for the kernel of the Moving Tiles method. Variables tx, ty and tz represent
the current thread's x, y and z indices, variables bW, bH and bD represent the block's
width, height and depth (the number of threads inside it), respectively. The code
indicates input and output arrays only for one species, for simplicity. In real programs,
they represent separate arrays for all species involved in the simulation.

kernel MovingTiles(float array C_in [Depth][Height][Width],

float array C_out [Depth][Height][Width])

declate shared float array Cs [bD][bH][2*bW+1]

i=index for C_in [by*(bD-2)+tz][bx*(bH-2)+ty][tx]

read C_in [i] into Cs[tz][ty][tx+1]

i=index for C_in [by*(bD-2)+tz][bx*(bH-2)+ty][bW+tx]

read C_in [i] into Cs [tz][ty][bW+tx+1]

for k=0 to Width / bW

i=index for C_in [by*(bD-2)+tz][bx*(bH-2)+ty][k*bW+tx]

synchronize threads

if this thread is not on the edge of the block

compute laplacian from Cs array

//data for thread(tz, ty, tx) is in Cs[tz][ty][tx+1]

compute reaction and/or advection terms from Cs array

store updated value in C_out[i]

synchronize threads

if tx == bW-1

Cs [tz][ty][0]=Cs [tz][ty][bW]

Cs [tz][ty][tx+1]=Cs [tz][ty][bW+tx+1]

synchronize threads

if k b= Width/bW-1

i=index for C_in [by*(bD-2)+tz][bx*(bH-2)+ty][(k+2)*bW+tx]

read C_in [i] into Cs [tz][ty][bW+tx+1]

end for

end kernel

Table 7
Simulation speed of the diffusion problem with respect to grid shape.

First generation (8800 GTX)

(1) Height×Depth Speed
(Mpoints/s)

Speed
(Mpoints/s)

Speed
(Mpoints/s)

(2) Width×Depth (1) Width=256 (2) Height=256 (3) Depth=256

(3) Width×Height Shared Tiles Shared Tiles Shared Tiles

2048×32 483 715 498 771 502 755
1024×64 483 710 491 755 491 754
512×128 482 714 489 742 489 740
256×256 480 712 480 712 480 712
128×512 480 712 451 664 453 712
64×1024 462 709 283 561 281 560
32×2048 464 703 307 439 305 440

Second generation (GTX 275)

(1) Height×Depth Speed
(Mpoints/s)

Speed
(Mpoints/s)

Speed
(Mpoints/s)

(2) Width×Depth (1) Width=256 (2) Height=256 (3) Depth=256

(3) Width×Height Shared Tiles Shared Tiles Shared Tiles

2048×32 1585 1772 1634 1664 1710 1527
1024×64 1634 1802 1666 1783 1710 1744
512×128 1696 1778 1712 1793 1700 1753
256×256 1715 1796 1715 1796 1715 1796
128×512 1682 1738 1641 1755 1634 1755
64×1024 1669 1756 1325 1672 1344 1680
32×2048 1526 1564 1258 1462 1312 1469

84 F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
We also investigated the overall simulation speed with respect to
the shape of simulated domain. All reaction–diffusion kernels depend
on shape the same way, therefore, we only measured the diffusion
problem. The simulation speed on several rectangular grids having
2563 points was measured. We kept one dimension fixed while the
other two were systematically changed. Results for both Shared and
Moving Tiles methods and both device generations are summarized in
Table 7.

There are two factors that influence the tendencies shown in
Table 7. One factor is when the height×depth area increases, the
simulation slows down. This is because the calculation of the
boundary condition on this side of the domain provides a time
consuming task. Every single grid point on this side is far away from
each other in the memory and a 32-byte memory request is made to
read and write each of them on both first and second generation
devices. If width=32 then it is equivalent to reading and writing
12.5% of the entire simulation space.

The other factor is the variation of total read redundancy. If the
length is increased along the axis which has no block overlap (z axis for
Shared method and x axis for Moving Tiles) then the other two
dimensions become smaller, reducing read redundancy, thus increasing
simulation speed.
Table 6
Simulation speed of the reference CPU implementations on a 2.8 GHz desktop
computer, and the relative speedup using a first (GeForce 8800 GTX) and a second
(GeForce GTX 275) generation video cards.

System 2.8 GHz
Core 2 Duo

GeForce 8800 GTX GeForce GTX 275

Grid dimensions:
256×256×256

Reference
Mpoints/s

Shared
speedup

Moving
Tiles
speedup

Shared
speedup

Moving
Tiles
speedup

Diffusion 89.2 5.4 8.0 19.2 20.1
Turing pattern formation 31.1 10.9 14.4 36.7 32.6
Phase separation behind a
chemical front using
Cahn–Hilliard equation

11.1 11.3 14.1 42.0 42.3

Atmospheric advection–
diffusion process

61.6 7.4 10.2 20.9 24.4
Beyond the tendencies there are random variations in the speed,
mostly because the number of blocks to launch varies. If this number
approaches some integer multiple of the number of multiprocessors×
possible active blocks per multiprocessor then the speed increases.
Otherwise, most multiprocessors will have executed their blocks and
will have to wait until the last blocks are executed on the rest of the
multiprocessors. Using our table it is possible to choose the best
arrangement of dimensions for reaction–diffusion simulations in the
memory in order to maximize performance.

5. Conclusion

We presented in this study a potential application of GPUs to solve
reaction–diffusion equations. These equations arise in numerous
scientific areas and are responsible to describe patterns and structures
of involved chemical species. Moreover, using a similar framework,
the air pollution modelling can be simulated using this new parallel
infrastructure. Diversified systems have been tested to present the
efficiency of GPU computing. We can conclude that the parallel
implementations achieve typical acceleration values in the order of 5–
40 times compared to CPU using a single-threaded implementation
on a 2.8 GHz desktop computer depending on the problem and
parallelization strategyused.Our results indicate that theGPUcomputing
wouldbe apromising and cost efficient tool to runparallel applications to
solve reaction–diffusion and air quality problems.

Acknowledgements

The authors thank Prof. Zoltán Rácz (Eötvös Loránd University) for
the many helpful discussions. Authors acknowledge the financial
support of the Hungarian Research Found (OTKA K68253 and K81933)
and the European Union and the European Social Fund (TÁMOP 4.2.1./
B-09/KMR-2010-0003). This work makes use of results produced by
the SEE-GRID eInfrastructure for regional eScience, a project co-funded
by the EuropeanCommission (under contract number 211338) through
the Seventh Framework Program. SEE-GRID-SCI stimulates widespread
eInfrastructure uptake by new user groups extending over the region of
South Eastern Europe, fostering collaboration and providing advanced



85F. Molnár Jr. et al. / Chemometrics and Intelligent Laboratory Systems 108 (2011) 76–85
capabilities to more researchers, with an emphasis on strategic groups
in seismology, meteorology and environmental protection. Full infor-
mation is available at http://www.see-grid-sci.eu.

References

[1] M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod.
Phys. 65 (1993) 851–1112.

[2] D. Horváth, V. Petrov, S.K. Scott, K. Showalter, Instabilities in propagating
reaction–diffusion fronts, J. Chem. Phys. 98 (1993) 6332–6343.

[3] I.R. Epstein, K. Showalter, Nonlinear chemical dynamics: oscillations, patterns,
and chaos, J. Phys. Chem. 100 (1996) 13132–13147.

[4] V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Experimental evidence of a
sustained standing Turing-type nonequilibrium chemical pattern, Phys. Rev. Lett.
64 (1990) 2953–2956.

[5] J. Horváth, I. Szalai, P. De Kepper, An experimental design method leading to
chemical Turing patterns, Science 324 (2009) 772–775.

[6] D.R. Fowler, H. Meinhardt, P. Prusinkiewicz, Modeling seashells, Comp. Grap. 26
(1992) 379–387.

[7] I. Lagzi, D. Ueyama, Pattern transition between periodic Liesegang pattern and
crystal growth regime in reaction–diffusion systems, Chem. Phys. Lett. 468 (2009)
188–192.

[8] A.G. Anderson, W.A. Goddard III, P. Schröder, Quantum Monte Carlo on graphical
processing units, Comput. Phys. Commun. 177 (2007) 298–306.

[9] W. Liu, B. Schmidt, G. Voss, W. Müller-Wittig, Molecular dynamics simulations on
commodity GPUs with CUDA, Lect. Notes Comput. Sci. 4873 (2007) 185–196.

[10] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten,
Accelerating molecular modeling applications with graphics processors, J. Comput.
Chem. 28 (2007) 2618–2640.

[11] T. Preis, P. Virnau, W. Paul, J.J. Schneider, GPU accelerated Monte Carlo simulation
of the 2D and 3D Ising model, J. Comput. Phys. 228 (2009) 4468–4477.

[12] W. Liu, B. Schmidt, G. Voss, W. Müller-Wittig, Accelerating molecular dynamics
simulations using Graphics Processing Units with CUDA, Comput. Phys. Commun.
179 (2008) 634–641.

[13] E. Gutiérrez, S. Romero, M.A. Trenas, E.L. Zapata, Quantum computer simulation
using the CUDAprogrammingmodel, Comput. Phys. Commun. 181 (2010) 283–300.

[14] N. Sanna, I. Baccarelli, G. Morelli, The VOLSCAT package for electron and positron
scattering of molecular targets: a new high throughput approach to cross-section
and resonances computation, Comput. Phys. Commun. 180 (2009) 2550–2562.

[15] N. Sanna, I. Baccarelli, G. Morelli, SCELib3.0: the new revision of SCELib, the
parallel computational library of molecular properties in the Single Center
Approach, Comput. Phys. Commun. 180 (2009) 2544–2549.

[16] S. Li, B. Livshitz, V. Lomakin, Fast evaluation of Helmholtz potential on graphics
processing units (GPUs), J. Comput. Phys. 229 (2010) 8463–8483.

[17] B. Block, P. Virnau, T. Preis, Multi-GPU accelerated multi-spin Monte Carlo
simulations of the 2D Ising model, Comput. Phys. Commun. 181 (2010) 1549–1556.

[18] R.G. Belleman, J. Bédorf, S.F. Portegies Zwart, High performance direct gravita-
tional N-body simulations on graphics processing units II: an implementation in
CUDA, 13, New Astron, 2008, pp. 103–112.

[19] E.B. Ford, Parallel algorithm for solving Kepler's equation on graphics processing
units: application to analysis of Doppler exoplanet searches, New Astron. 14
(2009) 406–412.

[20] J. Sainio, CUDAEASY – a GPU accelerated cosmological lattice program, Comput.
Phys. Commun. 181 (2010) 906–912.

[21] S.S. Stone, J.P. Haldar, S.C. Tsao, W.-M.W. Hwua, B.P. Sutton, Z.-P. Liang,
Accelerating advanced MRI reconstructions on GPUs, J. Parallel Distrib. Comput.
68 (2008) 1307–1318.

[22] D. Castano-Diez, D. Moser, A. Schoenegger, S. Pruggnaller, A.S. Frangakis,
Performance evaluation of image processing algorithms on the GPU, J. Struct.
Biol. 164 (2008) 153–160.

[23] S. Melchionna, M. Bernaschi, S. Succi, E. Kaxiras, F.J. Rybicki, D. Mitsouras, A.U.
Coskun, C.L. Feldman, Hydrokinetic approach to large-scale cardiovascular blood
flow, Comput. Phys. Commun. 181 (2010) 462–472.

[24] D. Komatitsch, D. Michea, G. Erlebacher, Porting a high-order finite-element
earthquake modeling application to NVIDIA graphics cards using CUDA, J. Parallel
Distrib. Comput. 69 (2009) 451–460.

[25] S.D.C. Walsh, M.O. Saar, P. Bailey, D.J. Lilja, Accelerating geoscience and engineering
system simulations on graphics hardware, Comput. Geosci. 35 (2009) 2353–2364.

[26] D. Komatitsch, G. Erlebacher, D. Goddeke, D. Michea, High-order finite-element
seismic wave propagation modeling with MPI on a large GPU cluster, J. Comput.
Phys. 229 (2010) 7692–7714.

[27] F.Molnár Jr., T. Szakály, R.Mészáros, I. Lagzi, Air pollutionmodelling using a Graphics
Processing Unit with CUDA, Comput. Phys. Commun. 181 (2010) 105–112.

[28] I. Senocak, J. Thibault, M. Caylor, Rapid-response urban CFD simulations using a
GPU computing paradigm on desktop supercomputers, Eighth Symposium on the
Urban Environment, Phoenix Arizona, 2009, p. J19.2.
[29] V. Simek, R. Dvorak, F. Zboril, J. Kunovsky, Towards accelerated computation of
atmospheric equations using CUDA, Proceedings of the UKSim 2009: 11th
International Conference on Computer Modelling and Simulation, 2009,
pp. 449–454.

[30] B. Huang, J. Mielikainen, H. Oh, H.-L.A. Huang, Development of a GPU-based High-
Performance Radiative Transfer Model for the Infrared Atmospheric Sounding
Interferometer (IASI), J. Comput. Phys. 230 (2011) 2207–2221.

[31] M. Januszewski, M. Kostur, Accelerating numerical solution of stochastic
differential equations with CUDA, Comput. Phys. Commun. 181 (2010) 183–188.

[32] A. Buluc, J.R. Gilbert, C. Budak, Solving path problems on the GPU, Parallel Comput.
36 (2010) 241–253.

[33] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips, GPU
computing, Proc. IEEE 96 (2008) 879–899.

[34] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, K. Skadron, A performance study
of general purpose applications on graphics processors using CUDA, J. Parallel
Distrib. Comput. 68 (2008) 1370–1380.

[35] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, V. Volkov, Parallel computing experiences with CUDA, Micro IEEE 28
(2008) 13–27.

[36] http://www.nvidia.com/object/cuda_get.html.
[37] D.P. Playne, K.A. Hawick, Data parallel three-dimensional Cahn-Hilliard field

equation simulation on GPUs with CUDA, Technical Report CSTN-073 (2009).
[38] P. Micikevicius, 3D finite difference computation on GPUs using CUDA, Technical

Report NVIDIA (2009).
[39] A.R. Sanderson, M.D. Meyer, R.M. Kirby, C.R. Johnson, A framework for exploring

numerical solutions of advection–reaction–diffusion equations using a GPU-based
approach, Comput. Vis. Sci. 12 (2009) 155–170.

[40] NVIDIA Corporation, NVIDIA CUDA Programming guide, http://developer.download.
nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.
pdf.

[41] P. Micikevicius, 3D finite difference computation on GPUs using CUDA, ACM Int.
Conf. Proc. Ser. 383 (2009) 79–84.

[42] I. Lengyel, I.R. Epstein, Modeling of Turing structures in the chlorite-iodide-
malonic acid-starch reaction system, Science 251 (1991) 650–652.

[43] H. Shoji, K. Yamada, Most stable patterns among three-dimensional Turing
patterns, Jpn. J. Ind. Appl. Math. 24 (2007) 67–77.

[44] H. Shoji, K. Yamada, D. Ueyama, T. Ohta, Turing patterns in three dimensions,
Phys. Rev. E 75 (2007) 046212.

[45] J. Horváth, I. Szalai, P. De Kepper, Pattern formation in the thiourea–iodate–sulfite
system: spatial bistability, waves, and stationary patterns, Phys. D 239 (2010)
776–784.

[46] A. Nakamasu, G. Takahashi, A. Kanbe, S. Kondo, Interactions between zebrafish
pigment cells responsible for the generation of Turing patterns, Proc. Natl Acad.
Sci. 106 (2009) 8429–8434.

[47] A. Volford, I. Lagzi, F. Molnár jr., Z. Rácz, Coarsening of precipitation patterns in a
moving reaction–diffusion front, Phys. Rev. E. 80 (2009) 055102(R).

[48] R.F. Sultan, Propagating fronts in periodic precipitation systems with redissolu-
tion, Phys. Chem. Chem. Phys. 4 (2002) 1253–1261.

[49] Z. Rácz, Formation of Liesegang patterns, Phys. A 274 (1999) 50–59.
[50] A. Volford, F. Izsák, M. Ripszám, I. Lagzi, Pattern formation and self-organization in

a simple precipitation system, Langmuir 23 (2007) 961–964.
[51] B.P.J.D. Costello, Control of complex travelling waves in simple inorganic systems –

the potential for computing, Int. J. Unconv. Comput. 4 (2008) 297–314.
[52] P. Pápai, I. Lagzi, Z. Rácz, Complex motion of precipitation bands, Chem. Phys. Lett.

433 (2007) 286–291.
[53] I. Lagzi, R. Mészáros, L. Horváth, A.S. Tomlin, T. Weidinger, T. Turányi, F. Ács, L.

Haszpra, Modelling ozone fluxes over Hungary, Atmos. Environ. 38 (2004)
6211–6222.

[54] I. Lagzi, A.S. Tomlin, T. Turányi, L. Haszpra, Modelling photochemical air pollutant
formation in Hungary using an adaptive grid technique, Int. J. Environ. Pollut. 36
(2009) 44–58.

[55] I. Lagzi, D. Kármán, T. Turányi, A.S. Tomlin, L. Haszpra, Simulation of the dispersion
of nuclear contamination using an adaptive Eulerian grid model, J. Environ.
Radioactiv. 75 (2004) 59–82.

[56] D. Dabdub, J.H. Seinfeld, Parallel computation in atmospheric chemical modeling,
Parallel Comput. 22 (1996) 111–130.

[57] M. Schmidt, R.P. Schafer, An integrated simulation system for traffic induced air
pollution, Environ. Modell. Softw. 13 (1998) 295–303.

[58] M. Martin, O. Oberson, B. Chopard, F. Mueller, A. Clappier, Atmospheric pollution
transport: the parallelization of a transport & chemistry code, Atmos. Environ. 33
(1999) 1853–1860.

[59] V.N. Alexandrov, W. Owczarz, P.G. Thomson, Z. Zlatev, Parallel runs of a large air
pollution model on a grid of Sun computers, Math. Comput. Simul. 65 (2004)
557–577.

[60] R. Lovas, P. Kacsuk, I. Lagzi, T. Turányi, Unified development solution for cluster
and Grid computing and its application in chemistry, Lect. Notes Comput. Sci.
3044 (2004) 226–235.

[61] http://nimbus.elte.hu/~cuda/RD/cuda.html.

http://www.see-grid-sci.eu
http://www.nvidia.com/object/cuda_get.html
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://nimbus.elte.hu/~cuda/RD/cuda.html

	Simulation of reaction–diffusion processes in three dimensions using CUDA
	Introduction
	Numerical implementation of reaction–diffusion systems
	Basics of CUDA
	Application
	Results and discussion
	Reaction–diffusion problems
	Performance

	Conclusion
	Acknowledgements
	References


